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Summary 

NACOE project S26, Virtual WiM – Enriching WiM and Enhancing Decisions 
identified opportunities for Queensland Department of Transport and Main Roads 
(TMR) to add value to investments by both TMR and the heavy vehicle transport 
industry. The project used recent developments in data analytics to link weigh-in-
motion (WiM) data with other heavy vehicle datasets to generate new ‘virtual WiM’ 
or vWiM1 datasets. The vWiM approach enhances data quality, coverage, 
accessibility, application, and value of TMR’s existing WiM datasets (Figure S 1). 
The value of vWiM is generated through better evidence-based decisions relating 
to the $billions invested in transportation and infrastructure made every year while 
supporting safe productive access to TMR’s infrastructure. 

Figure S 1: vWiM leverages existing heavy vehicle data collection assets to 
enhance value, data quality, coverage and evidence-based decisions 

The concepts of vWiM emerged while reviewing TMR’s WiM systems, engaging with stakeholders, preparing 
a draft Strategic Asset Management Plan (SAMP) for WiM, and analysing 13 months of WiM focused on the 
load platforms, low loaders and cranes. These vehicles pose the largest risks to bridges. The vWiM concepts 
were further refined while integrating WiM data with other datasets including bridge monitoring, automatic 
number plate recognition (ANPR), GPS tracking of heavy vehicles (IAP), authority to operate (ATO), on-
board mass management (OBM), and classifier data.  

The project demonstrated the viability and value of vWiM concepts by extrapolating WiM data to more 
common classifier sites across Queensland. In addition, the viability of enhancing the quality of WiM mass 
data by comparing heavy vehicles of known mass in the traffic stream was demonstrated by integrating GPS 
tracking, OBM, and ATO data with WiM data. Similarly, bridge monitoring systems were also successfully 
calibrated using heavy vehicles in the traffic stream. Finally, a prototype tracking tool for Class 1 heavy 
vehicles was delivered which tracked load platforms posing the greatest risks to bridges through the network 
to provide a history of loading and inform access and asset management decisions.  

The project recommends the adoption of the vWiM concepts and supporting a program of continual 
improvement. The program should target the quality, coverage, accessibility, and linking of datasets. Further 
development of the engineering and analytics to translate the data into information and knowledge are also 
necessary to support informed decisions that benefit the Queensland community. 

 

1 The concept of vWiM is to enhance the value, quality, accessibility and application of existing and emerging heavy vehicle data 
collection assets by interlinking these related datasets 
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Extended Summary 

NACOE project S26, Virtual WiM – Enriching WiM and Enhancing Decisions identified opportunities for 
Queensland Department of Transport and Main Roads (TMR) to add value to investments by both TMR and 
the heavy vehicle transport industry. The project used recent developments in data analytics to link weigh-in-
motion (WiM) data with other heavy vehicle datasets to generate new ‘virtual WiM’ or vWiM datasets. The 
vWiM approach enhances data quality, coverage, accessibility, application, and value of TMR’s existing WiM 
datasets (Figure S 1). The value of vWiM is generated through better evidence-based decisions relating to 
the $billions invested in transportation and infrastructure made every year while supporting safe productive 
access to TMR’s infrastructure. 

The concepts of vWiM emerged while reviewing TMR’s WiM systems, engaging with stakeholders, preparing 
a draft Strategic Asset Management Plan (SAMP) for WiM, and analysing 13 months of WiM focused on the 
load platforms, low loaders, and cranes. These vehicles pose the largest risks to bridges. The vWiM 
concepts were further refined while integrating WiM data with other datasets including bridge monitoring, 
automatic number plate recognition (ANPR), GPS tracking of heavy vehicles (IAP), authority to operate 
(ATO), on-board mass management (OBM), and classifier data. The practical applications and value of 
vWiM were highlighted during trials that integrated WiM and classifier data with multiple datasets2.  

Bridge monitoring identified that load platforms pose the largest risk to TMR's bridges, but these vehicles 
were not well represented in the WiM and classifier data (Figure S 2). Subsequent updates to WiM and 
classifier processing algorithms revealed a rich, previously hidden dataset of these and other heavy vehicles 
that are too wide for a single lane and consequently utilise multiple lanes to access the network. 

Figure S 2: Updates to processing algorithms made wide and heavy loads 'visible' in TMR's WiM and classifier 
records 

A prototype vWiM tracking tool, developed during this project, successfully tracked load platforms through 
the bridge network using their WiM and classifier ‘axle spacing signatures’ only. This increases the 
knowledge about the history of large loads crossing specific bridges and pavements, to inform bridge risk 
and support credible access decisions. 

The project demonstrated the viability and value of extrapolating WiM data to more common classifier sites, 
thus leveraging WiM data across the state. A ‘similarity statistic’ was developed to determine the suitability of 
the extrapolations.   

 

2 The project explored the integration of WiM with classifier data, IAP (Intelligent Access Program telematics), OBM (On-Board 
Mass), ATO (Authority to Operate) and bridge monitoring data. 
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The viability of enhancing the quality of WiM mass data by comparing heavy vehicles of known mass in the 
traffic stream was demonstrated by integrating GPS tracking, OBM and ATO data with WiM data. Bridge 
monitoring systems were also successfully calibrated using heavy vehicles in the traffic stream.  

This final report of NACOE S26, Virtual WiM – Enriching WiM and Enhancing Decisions provides further 
detail of the 4-year project. It recommends the adoption of the vWiM concepts of integrating multiple 
datasets and supporting a program of continual improvement. The program should target the quality, 
coverage, accessibility and linking of datasets. Further development of the engineering and analytics to 
translate the data into information and knowledge are also necessary to support informed decisions that 
benefit the Queensland community. 

Aim 

The overall aim of the project was to review the Queensland Department of Transport and Main Roads 
(TMR) WiM systems and to identify opportunities for improvement with an emphasis on technologies and 
systems that could improve input to the credible risk-informed management of the bridge stock.  

Background 

TMR works to optimise heavy vehicle access and benefit to the community accessing over 33,000 km of 
roads and 3,300 bridges. When determining access and planning outcomes, policy decision makers are 
regularly required to exercise judgment balancing productivity and risk (Figure S 3). Decisions must be made 
with an often-incomplete subset of information and knowledge available. This incomplete knowledge can 
lead to sub-optimal decisions and potentially uneconomic or unsafe utilisation of the network.  

Figure S 3: Heavy vehicle access and planning 
decisions are a balancing act 

Figure S 4: Virtual WiM (vWiM) supports credible 
decision-making by providing factual 
evidence of current and historical access 

Credible decisions are aided by accessible quality data and information. Decisions that are informed about 
the actual heavy vehicles accessing the network, compliance rates and how the infrastructure responds are 
more credible and respectful towards stakeholders and therefore more productive (Figure S 4). 
Developments in heavy vehicle data collection technologies and analytics are providing opportunities to 
improve these decisions and challenge in-built assumptions through the delivery of credible, accessible 
information about the heavy vehicles accessing the network.  
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Findings of the Project 

TMR’s WiM systems 

Benchmarking TMR’s WiM systems nationally concluded that TMR’s systems are mature and would benefit 
from the generation of more accurate WiM data with less down time while reliably recording information on 
Class 1 heavy vehicles such as cranes, low loaders and load platforms. Approaches that may facilitate this 
outcome include: 

 installing WiM stations in pavements with slow rates of deterioration to improve data quality over the life 
of the WiM station 

 measuring ground contact width to improve the understanding of the loads and compliance levels of the 
Class 1 heavy vehicles  

 improving data analytics to extract more knowledge from available data 
 monitoring and continually improving the data quality. 

Stakeholder engagement 

The value and opportunity of WiM were discussed with stakeholders from the areas of Transport Planning, 
Portfolio Investment and Planning, Program Delivery and Operations and Engineering and Technology. Key 
observations from these discussions include: 

 The outcomes that stakeholders are seeking from WiM include: 

– managing risk of vulnerable assets 
– informing the road manager 
– optimising return on investment 
– evidence based decisions 
– credibility of decisions 
– investment priorities 
– commodity movement 
– freight productivity and network access 
– freight task quantification 
– compliance management. 

 There is a perception that WiM has limited value because the quality and availability of WiM data is often 
inadequate for enforcement purposes. This perception is inadequate in the contemporary context. 
Support for compliance management is just one of many roles WiM data can play underpinning 
evidence-based decision making and delivering value. 

 WiM currently is not extensively used in decision-making. Network coverage, accessibility and 
inadequate quality contribute to this status. Greater utilisation of WiM will follow if these limitations are 
overcome. This is the case from planning to heavy vehicle operations, to pavement design and 
maintenance, bridge access management and risk assessments. 

 The value proposition for WiM increases for all stakeholders as WiM data is integrated with other data, 
which include ANPR data, permit vehicle data, classifier data, OBM data, IAP data and ATO data. At 
present, on-board vehicle monitoring technologies are fitted to a small fraction of the heavy vehicle fleet. 

 Bridge risk management using WiM is a key opportunity to inform stakeholders of the risks associated 
with the movement of the cranes, low loaders and load platforms across the network. While these 
vehicles represent the greatest risk to bridges, the least amount of information is known about them (as 
they were not previously visible in the WiM and classifier data stream). 

 The transport industry knows more about what vehicles access the network than TMR. This is 
unacceptable. 

 Classifiers are cost effective for vehicle classification, but WiM provides mass data as well and is helpful 
in validating access by innovative vehicles. WiM provides data about all vehicles whereas OBM only 
provides data from participating vehicles. 
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Strategic Asset Management Plan for WiM 

The value proposition for WiM data is not well articulated globally because the focus is on collecting data to 
inform compliance rates rather than the optimal management of the road and bridge network and the heavy 
vehicles that provide transport services for the community.  

The gross value added (GVA) to the Queensland economy by the transport, postal and warehousing industry 
was $15.3 billion in the year to June 2017 with approximately 45% of the workforce associated with road 
transport (TMR 2018)3. Similarly, TMR’s annual expenditure on maintenance, preservation and operations is 
approximately $1 billion per year (TMR 2019).  

Decisions relating $billions of investments in transportation and infrastructure are made every year. These 
decisions influence the productivity of transport, and associated industries as well as the wear of pavements 
and bridges and the risks of bridge collapses from overloading and fatigue. Better informed decisions, based 
on knowledge of the actual heavy vehicles operating on the network, will release value by supporting safe 
and productive access across TMR’s existing infrastructure.   

Increasing data analytics capabilities are transforming the accessibility of information derived from WiM and 
related data technologies. There are increasing opportunities for WiM and related technologies to support 
evidence-based decisions by TMR in its role as the road manager by informing credible risk-informed 
decisions to generate the optimal return on both TMR’s and the transport industry’s infrastructure.  

The project generated a draft Strategic Asset Management Plan (SAMP) for TMR WiM to place WiM in the 
context of TMR’s strategic plans, to articulate the value of WiM in informing better decisions and to develop a 
high-level plan for WiM going forward. The draft SAMP proposed a program of continual improvement and 
investment in data quality, accessibility and the application of WiM and related datasets over 10 years to 
respond to identified stakeholder needs. The draft WiM SAMP should be reviewed once TMR’s organisation-
wide SAMP is published in 2022. It is noted that the imperatives for productively and safely utilising the road 
network have further increased since the draft SAMP was prepared. 

This report builds on the insights from the stakeholder feedback and the strategies of the draft SAMP to 
highlight opportunities, evaluate concepts and to develop prototype tools to point the way to extracting 
greater value from these datasets. 

 

3 Department of Transport and Main Roads, November 2018, Queensland Transport and Logistics Workforce Current 
and Future Trends Report, retrieved from https://www.tmr.qld.gov.au/-/media/busind/businesswithus/TLI-
Connect/trends/qtlw-current-future-trends-report-2018.pdf?la=en 
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Cranes, low loaders, and load platforms 

The largest vehicles on TMR’s network, specifically Class 1 heavy vehicles such as load platforms, low 
loaders and cranes pose the greatest risk to bridges as illustrated in Figure S 5. Class 1 heavy vehicles are 
regularly observed in the bridge monitoring data stream but were not initially evident in the WiM and 
classified data. Enhancements to the data processing algorithms improved the visibility of Class 1 heavy 
vehicles in the data and provided the opportunity to better study these vehicles. 

Figure S 5: Virtual WiM data from bridge monitoring has highlighted the importance of load platforms, low 
loaders, and cranes to bridge risk management  

The collection of photos presented in Figure S 6 illustrate these load platforms, low loaders, and cranes 
traversing TMR’s bridges. 
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Figure S 6: Load platforms, low loaders and cranes were a focus of this report as they represent the 
greatest risks to bridges  
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Dataset 

The project sourced input from both WiM and classifier data collected over the period from 01/01/2019 to 
09/02/2020. Across the Queensland network TMR has 60 WiM installations and 126 networked classifier 
installations. This project utilised data from 23 operational WiM installations and 97 networked classifier 
installations. The data set involved 28 million WiM and classifier records of vehicles similar to a semi-trailer 
and larger. 

Virtual WiM 

Virtual Weigh-in-Motion (vWiM) is an emerging concept targeted at enhancing data about the heavy vehicles 
that access the road network by firstly providing ‘virtual4’ WiM data and related information at locations 
without WiM data but with other assets such as classifiers or ANPR (Figure S 7). Secondly, vWiM enhances 
the credibility and application of heavy vehicle data by merging data subsets from different technologies 
(Figure S 7). vWiM increases the effective coverage and data quality of existing data collection infrastructure 
to provide a richer picture of heavy vehicle journeys and heavy vehicle characteristics. 

Figure S 7: Virtual Weigh-in-Motion (vWiM) is an emerging concept leveraging existing heavy vehicle data 
collection assets to enhance value, data quality, coverage, and evidence-based decisions 

vWiM analyses demonstrated that by merging WiM, classifier, bridge monitoring and OBM datasets, it is 
possible to:  

 extend the coverage of WiM data by generating vWiM data at sites without WiM data such as classifier 
sites 

 inform and monitor the infrastructure risk, and the credibility and effectiveness of access decisions 
 identify load platforms based on their axle spacing footprint and track individual load platforms as they 

travel across the network, even without access to ANPR 
 understand the characteristics of the actual vehicles accessing the network (as opposed to what is 

permitted) including:  

– when, where and how often they travel  
– their configuration, geometry, mass distributions and speed 
– structural impacts on bridges 

 assess data quality and cross-validate multiple datasets to improve data quality.  

 

4  Virtual: not physically existing as such but made by software to appear to do so. 
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Estimating extreme bridge response to heavy vehicles from WiM data 

The axle loads and axle spacing reported by WiM systems and the measured responses of bridges to traffic 
provide an opportunity to determine the statistics of both the fatigue damage and the extreme response. 
These statistical summaries provide evidence to support risk-informed bridge assessments and to challenge 
the assumptions underpinning traditional code-based structural assessments. The statistical models of 
bridge responses to traffic have traditionally been focused on large bridges, however there is an opportunity 
to automate this process for short and medium span bridges to support the risk-informed management of 
TMR’s ageing infrastructure of bridges.  

Data integration and data quality 

Studies involving the integration of WiM, classifier, ATO and OBM data as well as the camera and monitoring 
data from the Gateway Arterial Flyover (GAF) highlighted opportunities, including: 

 Calibrating bridge monitoring and WiM systems using heavy vehicles identified in the traffic stream. This 
avoids traffic disruption and provides the opportunity to continually calibrate WiM and bridge monitoring 
systems to estimate axle group mass and gross combination mass (for example, refer to Figure S 8). 

 Improving the detection rate of WiM and classifiers in identifying the load platforms and low loaders that 
pose the greatest risk to bridges. These vehicles are often wider than a lane and their ground contact 
widths vary along the length of the vehicle making them difficult to detect with traditional WiM algorithms, 
but readily detectable by bridge monitoring systems. Substantial progress was made during this project 
to ‘stitch’ multi-lane records together, with further improvements possible. 

 Tracking load platforms across multiple WiM and classifier sites highlighted the opportunity to improve 
the quality of the axle spacing and axle group mass data by merging multiple records, inform the 
calibration accuracy of assets and build a historical database of these heavy loads crossing bridges 
along the route.  

 Improving the accuracy of axle spacing determined by classifiers from ± 200 mm to ± 50 mm would 
enhance the classification of heavy vehicle types and help facilitate the live calibration of WiM and bridge 
monitoring systems. The surprisingly coarse axle spacing resolution evident, applies particularly to 
classifiers relying on one piezo sensor and loops rather than two piezo sensors and loops. 

 Changing from simple averages to box and whisker plots of the steer axle mass of articulated vehicles to 
identify excessive variability within the data stream to better categorise data quality, support live 
calibration and continual improvement programs (Figure S 9). 

Figure S 8: Gross vehicle mass comparison between OBM data and WiM data 
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Figure S 9: WiM monthly semi-trailer 123 configuration steer axle mass statistics 

Extrapolating WiM data to classifier sites 

The vWiM concept of extrapolating data from a WiM site and applying it at a site where there was only a 
classifier was investigated to establish if there was an opportunity to add value to the existing data collection 
infrastructure.  

The systematic assessment of a site similarity statistic has revealed its potential in predicting sites with 
similar traffic and by extension WiM profiles. This statistic provides a novel method to determine if 
extrapolating WiM data to a classifier site is appropriate. The process undertaken is shown in Figure S 10. 

Figure S 10: Process for extrapolating from WiM to classifier sites 

The extrapolation methodology was tested by extrapolating WiM data between WiM sites and comparing the 
extraoplated data (based on axle spacing similarity) with the actual WiM data. Not surpisingly, there was only 
a relatively small portion of the WiM stations where data extraoplation between sites was approporiate but 
because of the much larger number of classifier sites, it was found approporiate to extrapolate data from at 
least one of the WiM sites to at least one classifier site for more than 90% of the classifier sites.  

The enhanced value of this extrapolation would be further increased by enhancing axle spacing and mass 
data quality. Extending traffic volume and WiM data through these statistical inference based methods can 
improve WiM data coverage across the network. This extrapolation is particularily relevant to pavement and 
bridge modelling where longer term WiM data is needed but often not avaliable. 
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Validating WiM calibrations using GPS tracking 

The emergence of GPS tracking of heavy vehicles 
(IAP data and telematics) in combination with ATO 
and on-board mass (OBM) data affords the 
opportunity to compare the mass measurements from 
two independent systems and potentially contribute to 
the regular updating of WiM system calibrations and 
the improvement in quality of WiM data. As part of a 
case study, WiM data collected at the Nudgee WiM 
site was compared against IAP telematics. Through 
comparison of the time, weight, and directional 
differences between IAP and WiM records, it was 
found that most anonymous WiM sightings could be 
matched to IAP records. This process relies on the 
easily transferrable method of dead reckoning (shown 
in Figure S 11), which can be extended to a wide 
range of other fleet telematics data sources.  

The value of WiM data is exponentially increased 
through data synthesis, whether IAP, ANPR or other 
datasets. Assisted tracking, where WiM records are 
matched to dedicated tracking systems, can 
supplement the value generated through tracking 
based on WiM and classifier 'axle spacing footprints' 
alone. 

Tracking load platforms using WiM and classifier data 

This project developed prototype tools to track uncommon Class 1 heavy vehicles, such as load platforms, 
through the network using only WiM and classifier data. These tools can track uncommon large vehicle 
movements through the network and thus provide the opportunity to build a database of the high-risk 
vehicles that have crossed bridges to inform the risk management of the bridge and enhance the credibility 
of access management and compliance management decisions. 

Collectively, the tracking tools allow the user to find records of interest based on their configuration, mass, 
location and timings. If a record of interest is part of a trip, the locations and axle masses can be viewed for 
each paired site, as illustrated in Figure S 12. 

Figure S 11: Integrating IAP with WiM via dead 
reckoning to facilitate updating 
WiM calibration 
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Figure S 12: Tracking load platforms across multiple WiM and classifier sites to enhance knowledge of the 
vehicle and the performance of bridges they cross 

Future considerations 

Ten areas for future consideration are detailed based on the project’s investigations. 

1. Axle Load Data 

Ensuring quality axle load data over time (refer Figure S 9) lies at the core of the value proposition for WiM. 
Possible strategies for improving the axle load data measurements include valuing quality axle data highly 
and selecting WiM systems and sensors to provide value over the life of the sensors/system including 
regular road surface maintenance. 

2. Axle Spacing 

The spacing of the axles for heavy vehicles can act as a signature for the larger vehicles on the network and 
can help differentiate vehicle types, identify routes taken, identify vehicles that may be suitable for live 
calibration of WiM sites and to monitor compliance (Figure S 13). Some possible strategies for improving the 
accuracy of axle spacing and speed data include quantifying the variability in axle spacing through case 
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studies, investigating the causes of variability in recording of the axle spacing and implementing a continual 
improvement program, possibly in conjunction with suppliers of WiM and classifier systems. 

Figure S 13: Axle mass configuration for cranes with 6 or more axles 

3. Coverage of Wide Vehicles 

Pavement WiM and classifiers collect data for vehicles travelling in a lane, however wide vehicles such as 
low loaders and load platforms have a footprint that tends to straddle lanes or operate partly on the road 
shoulder. This means that while the detectors may collect data it may be inappropriate in terms of mass or 
configuration, leading to an underestimation of the actual loads on the road. When vehicles change lanes at 
WiM sites similar inaccurate inputs are provided. When vehicles are operating partly on the road shoulder, 
the mass operating on the shoulder is not recorded due to an absence of sensors located in the shoulder 
(Figure S 14). Even while vehicles such as prime movers may not straddle lanes, their trailers may do.  

The correct understanding of mass and configuration of these vehicles is critical as these are the largest 
vehicles on the network and they represent the largest risks to bridges. 

Figure S 14: The widest vehicles often run in the edge lane with tyres on the shoulder beyond the edge of the 
WiM sensors 

Possible strategies for improving the coverage of wide vehicles include: 

 upgrading algorithms to stitch together multi-lane WiM data (as was done for this project) 
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 extending the placement of sensors to include the shoulder 
 considering the use of bridge WiM, where the whole bridge span is the sensor, ensuring that data is 

collected for all drivelines, even on the shoulder. 

4. Ground Contact Width & Permits 

Lateral distribution of axle loads within bridges due to permit vehicles such as low loaders and load platforms 
varies with the width of the ground contact. As ground contact width is currently not measured it is not 
possible to determine the lateral load distribution on bridge structural components and, subsequently, 
acceptable loads or if overloading of a structure is occurring. In addition, often the acceptable load per axle 
depends on the ground contact width and the number of wheels per axle. 

Possible strategies to determine ground contact width and identify permit vehicles are to: 

 investigate technologies such as the heavy vehicles being fitted with electronically readable devices 
containing the permit vehicle details to enable measured data to be tied to the permit 

 trial technologies for measuring ground contact width, such as TIRTL, Lidar, laser and in-pavement 
sensors 

 add sensors to measure, (i) ground contact width, (ii) the driveline of the truck and (iii) the number of 
tyres per axle. 

5. Integration of ANPR Data with WiM  

ANPR is important when using WiM as it supports vWiM, provides confirmation that the vehicle type and 
configuration are as recorded in the WiM records, tare mass information when linked to the registration to 
support mass and axle spacing calibration as well as supporting compliance. Possible strategies for 
improving the integration of ANPR with WiM data include: 

 refining the integration of ANPR with WiM on multi-lane freeways 
 trialling the use of emerging solar powered ANPR systems with 4G connectivity and CCTV capability, to 

facilitate the capture of number plates, CCTV and the ability to view still images of selected vehicles and 
their loading 

 install front and rear facing systems where possible as well as ensuring that an angled view of the 
vehicle can be achieved, to allow for an identification of all the components of the configuration 

 continue the development of the integration of ANPR with WiM in association with monitoring projects 
 link ANPR, WiM and permit vehicle data sets. 

6. Geographical Coverage of WiM 

There are currently some portions of the road network where there are no WiM or classifier stations which 
transmit data back to the central data repository. These black spots in WiM or classifier stations include: 

 urban freeways where vehicle sensing technologies that do not provide 'axle spacing signatures' (e.g. 
loops) 

 highways where no WiM stations have been installed. 

Possible strategies for extending the geographical coverage of classifiers and WiM include  

 updating classifiers to report data via telemetry 
 installing WiM sites at critical locations 
 progressing the concepts of virtual WiM. These vWiM concepts include integrating WiM and classifier 

data via 'axle spacing signatures' and or ANPR data to extrapolate WiM data to other locations on the 
network. 

7. Bridge WiM 

Bridge based WiM systems are not commonly used in Australia. It has the potential advantage of being more 
stable over time as less pavement maintenance is required. Advantages also include that the sensors 
generally are not installed in the road surface thus minimising traffic disruption during installation and 
eliminating the need to acquire and install new sensors when pavement upgrades are undertaken. 
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Additionally, the system and sensors are relocatable, the loads from all the wheels on wide loads are 
recorded and the guardrails are not required to prevent impacts with cabinets and ANPR cameras. 

8. On-Board Mass (OBM) Measurement 

On-board mass (OBM) measurement has been emerging for decades in parallel with WiM and is now 
becoming more common in Queensland. Data is currently available to TMR for a limited subset of heavy 
vehicles. As the heavy vehicle fleet is becoming increasingly sophisticated, there will likely be an increasing 
take-up of these technologies by transport companies. 

Possible strategies relating to OBM and WiM include: 

 Cease the collection of WiM and classifier data and rely on OBM and related technologies. From a bridge 
perspective this only works if all vehicles are fitted with OBM and all axle spacing and axle loads are 
reported. 

 Utilise the OBM data to validate WiM station calibrations and support TMRs calibration of OBM data. 
 Continue to use WiM and classifier data to ensure coverage of all vehicles. 
 Merge the WiM, classifier and OBM datasets. 

9. Bridge Response Monitoring 

Bridge response monitoring provides both the performance data for components as well as the load model 
data for the traffic stream. Additional value is realised when the bridge-response monitoring data is 
integrated with other datasets such as ANPR, WiM, classifier, OBM, permit and ATO data. 

Possible strategies for bridge response monitoring include continuing to integrate with other datasets to: 

 inform structural behaviour 
 monitor the changes in structural performance through time 
 identify vehicles accessing the network and the responses they induce on structures 
 support due diligence 
 refine assessment load models to support risk and asset management 
 safely extend lives of bridges, inform rehabilitation and improve utilisation of the bridge asset. 

10. Uncommon Heavy Vehicle Tracking 

Potential enhancements to track uncommon heavy vehicles such as load platforms and low loaders include: 

 integration of the heavy vehicle network into the heavy vehicle matching algorithm 
 mapping of potential heavy vehicle trips undertaken by vehicles 
 integration with IAP to validate and improve tracking 
 exploring methods to aggregate routing data of all vehicles which cross the same bridge. 

From a bridge asset management perspective, tracking the largest of these vehicles through the network 
provides a history of access data to inform bridge capacity and risk assessments and enhance the credibility 
of decisions about access limits for routes. 

Conclusions 

The project investigated, found and demonstrated that there are increasing opportunities for WiM and related 
technologies to support evidence-based decisions by TMR.  

Internal engagement, national and international reviews found the value proposition for WiM data is not well 
articulated because the value proposition focuses on compliance management and do not include the 
optimal management of the road and bridge network and the heavy vehicles that provide transport services 
for the community. 
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A draft Strategic Asset Management Plan (SAMP) for TMR WiM was developed. The draft SAMP proposed a 
program of continual improvement and investment in data quality, accessibility and the application of WiM 
and related datasets over 10 years to respond to identified stakeholder needs.  

The load platforms, low loaders and cranes that pose the greatest risk to bridges across the network were 
investigated to understand their characteristics and to track them through the network to provide a loading 
history of large loads to inform access and asset management.  

The applications and value of WiM expand with increasing data quality, data coverage, accessibility of data 
and transformation of data into information and knowledge.  

While it is possible to extract value from imperfect data, it is also the case that some applications require 
improved quality and reliability of data. It was concluded that there are many means for improving data 
quality, including updating specifications for WiM and classifiers, continuous improvement of data 
post-processing with a network-level focus and live calibration of existing WiM sites (using vehicles of known 
and consistent mass, identified in the traffic stream). 

Data coverage can be improved through strategic maintenance of existing WiM systems, identifying and 
addressing data black spots, using the WiM data extrapolation methods developed as part of this project to 
provide virtual WiM data at classifier sites, combining complementary datasets, incorporating the connection 
between WiM and other heavy vehicle data sources, including bridge monitoring, ANPR, IAP, ATO, OBM 
and classifier data. The more independent complementary data sources that can be effectively combined, 
the more opportunities and value that will arise. 

This process of integration generates a completely new vWiM dataset that transforms the traditional view 
and value of WiM to support data-driven risk-informed decisions from planning to access management. 

Recommendations 

The project recommends the adoption of the vWiM concepts of integrating multiple datasets and supporting 
a program of continual improvement. The program should target the quality, coverage, accessibility and 
linking of datasets. Further development of the engineering and analytics to translate the data into 
information and knowledge are also necessary to support informed decisions that benefit the Queensland 
community.  
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1. Introduction 

1.1 Context 

This is the final report of NACOE S26, Review of TMR WiM Systems and Strategies: Virtual WiM and Heavy 
Vehicle Tracking – Feasibility and Value. The project has spanned four financial years from 2018–19 to 
2020–21.  

The overall aim of the project was to review Queensland Department of Transport and Main Roads (TMR) 
weigh-in-motion (WiM) systems and to identify opportunities for improvement with an emphasis on 
technologies that could improve input to the risk-informed management of the bridge stock. Utilising 13 
months of WiM and classifier data in conjunction with other datasets, the project sought to improve data 
quality and integration, and demonstrate practical applications of enhanced WiM data. In addition, a 
prototype tracking tool for Class 1 heavy vehicles was developed. Additional opportunities were also 
identified to further increase the value of WiM. 

1.1.1 Bridges, WiM and the Network 

TMR manages more than 33,000 km of state-controlled roads and 3,000 bridges. Approximately 10% of 
TMR’s bridge assets are operating at less than Australian Standard margins (operational bridges). This 
presents significant cost, risk and performance issues for TMR transport network management. WiM 
technology can assist TMR in extending the lives of the operational bridges by quantifying and managing the 
heavy vehicle loads accessing the bridge network. 

1.1.2 Evidence-based Decision Making 

The Queensland economy is dependent on the transport efficiency of people and goods over its road 
network. The management of the road network by TMR is essential for Queensland. A key function of TMR 
is optimising heavy vehicle access to the $70 billion road network to benefit the Queensland community. 
When determining access and planning outcomes, decision makers are regularly required to exercise 
judgment balancing heavy vehicle productivity and economic development with infrastructure management 
and safety (TMR 2020). These competing drivers and inputs into the decisions associated with access and 
planning are summarised in Figure 1.1 and Figure 1.2. 
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Figure 1.1: Access and planning decision drivers 

Evidence is drawn from a diverse range of sources to support these decisions, as illustrated in Figure 1.2. 
The light blue rectangles correspond to heavy vehicle data collected from weigh-in-motion, classifiers, bridge 
monitoring and imaging to support the heavy vehicle access decision making process. 

 

Figure 1.2: Evidence is drawn from multiple sources to inform heavy vehicle access decisions 
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Access and planning decisions must be made with the (often incomplete) subset of information and 
knowledge available at a given time. This incomplete knowledge leads to sub-optimal decisions and 
potentially uneconomic or unsafe utilisation of the network. 

Credible decisions are aided by accessible data with appropriate levels of confidence. Decisions that are 
informed about the actual heavy vehicles accessing the network are more credible and respectful towards 
stakeholders and therefore more productive. 

Developments in heavy vehicle data collection and analytics (light blue shaded rectangles in Figure 1.2) are 
providing an opportunity to improve these decisions and challenge in-built assumptions through the delivery 
of credible, accessible information about the heavy vehicles accessing the network. 

1.2 Aims and Objectives 

1.2.1 Aims 

The aim of this project is to enhance the value of WiM, classifier and other heavy vehicle data to inform 
bridge safety and decision making in relation to heavy vehicle network access and bridge management. The 
focus was on the largest heavy vehicles (Class 1 low loaders, load platforms and mobile cranes) as these 
vehicles represent the greatest risks to Queensland’s bridges and the data available for these vehicles is 
limited.   

1.2.2 Objectives 

The objectives were: 

1. to gather speed, axle spacing, axle group loads and geographical distribution of the low loaders, load 
platforms and cranes accessing the network 

2. to review and enhance the visibility of low loaders and load platforms in the WiM and classifier data 
across the network 

3. to determine if load platforms can be tracked through the network using WiM and classifiers alone 
4. to develop a rationale for using classifier and WiM data to generate vWiM data at classifier stations 
5. to ascertain the views of stakeholders on the value of vWiM. 

1.3 Scope 

The project analysed the WiM and classifier heavy vehicle data records for the TMR state road network in 
the period between January 2019 and February 2020. The project scope focused on load platforms, low 
loaders and cranes, and their attributes and behaviour on the network. The scope of activities included: 

1. investigating load platform, low loader and crane attributes such as speed, configuration, axle spacing, 
and mass, and where they travel in the state: 

2. investigating the potential for Virtual WiM to enhance the value of existing datasets: 

a. using WiM data to infer mass data for sites with only a classifier  
b. tracking large vehicles (such as load platforms) through the network using WiM and classifier data 

alone 
c. improving WiM/classifier data for wide low loaders and load platforms. 

A related NACOE project, NACOE R103 Virtual Weigh-in-motion and Queensland Freight Movement Study 
(2019–20), (Hore-Lacy et al. 2020), explored the concept of vWiM across the broader Queensland network 
and proposed a modular approach that would allow the vWiM system to be implemented sooner while 
scoping of the potential further advancements to improve accuracy. 
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1.4 Methodology 

The methodology was as follows: 

1. Review the literature to understand international experience with vWiM. 
2. Collate 12 months of WiM and classifier data from available WiM and classifier sites in Queensland for 

heavy vehicles with 6 or more axles (Austroads Class 6+5 heavy vehicles) and cranes. 
3. Develop tools to explore, analyse and visualise WiM and classifier data. 
4. Engage with stakeholders to identify and explore applications for the data. 
5. Evaluate the reliability and levels of confidence in WiM and vWiM data. 
6. Identify and trial methodologies for tracking load platforms through the network. 
7. Document the characteristics and value of vWiM through a Strengths, Weaknesses, Opportunities and 

Threats (SWOT) analysis. 

1.5 Report Outline 

This report discusses the overall project findings as follows: 

1. Introduction 
2. Learnings of S26 
3. Data Characteristics 
4. Vehicle Classifications 
5. Applications of Virtual WiM 
6. Future Considerations 
7. Appendices. 

The Appendices provide the details of a range of investigations referenced in the report. 

 Appendix A contains a list of definitions and terms used in this report. 
 Appendix B contains a description of the project dataset. 
 Appendix C contains a SWOT analysis of vWiM. 
 Appendix D contains the details of stakeholder engagements undertaken as part of this project. 

 

5 Austroads Class 6+ vehicles or Class 6+ vehicles refer in this report to heavy vehicles with at least three axle groups. 
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2. Learnings of Project S26 

Project S26 was undertaken over a period of four financial years from 2017–18 to 2020–21 and developed a 
number of learnings related to WiM. Each year of the project had different project teams and looked at 
different aspects of WiM. The aspects of WiM which were investigated were as follows: 

1. Review of TMR WiM systems 
2. Organisational context of WiM 

a. Stakeholder engagement 

b. Strategic Asset Management Plan for WiM 

3. Analysis of WiM and classifier data 
4. Complementary datasets and applications of vWiM. 

2.1 Review of TMR WiM Systems 

In the first year of S26, Zanardo and Heldt (2018) reviewed the current TMR WiM systems, to identify 
opportunities for improvement with the emphasis on technologies which could improve the inputs for 
risk-informed management of the bridge stock. This first year’s work started with a review of the applications 
of WiM in regard to bridge management as well as the current WiM practices for Australia and New Zealand. 

The review found that TMR had mature WiM systems which would benefit from the generation of more 
accurate WiM data more often across TMR’s network of WiMs and to reliably record information on Class 1 
heavy vehicles such as cranes, low loaders and load platforms. While Class 1 heavy vehicles are only a 
small portion of the heavy vehicle fleet, they pose the highest risks to bridges, with little to no reliable 
independent data available.  

Of the identified technology, it was found that installing WiM stations in pavements with slow rates of 
deterioration would enable higher quality data to be collected more often. The measurement of ground 
contact width would improve the understanding of the loads of the Class 1 heavy vehicles of interest 
accessing the network. 

2.2 Organisational Context of WiM 

In the project’s second year (2018–19), to enhance the value of WiM for TMR and provide organisational 
context, Heldt et. al. (2019) identified the existing value of TMR’s WiM network and highlighted future values 
of an enhanced WiM network. 

As TMR sought to better manage network outcomes, the usage of WiM data would become more significant 
over the medium term (10 years). This would correspond to a changing role for WiM, along with changing 
technologies, methodologies and organisational engagement. Development of a multi-department change 
strategy in relation to sourcing and using the data, including WiM data, could facilitate and expedite such 
change.  

The traditional compliance focus for WiM is increasingly inadequate to define the emerging roles of WiM in 
decision making. There were strong common themes in relation to the future of desired WiM data across 
many parts of TMR. This would become increasingly true as TMR transitions towards a stronger emphasis 
on asset management, and as the limited coverage and reliability of WiM improves. 

It was noted that WiM data was likely to become a more significant decision input from risk, performance and 
planning perspectives as well as in supporting compliance initiatives. Many of the developments required to 
meet this change required investment and engagement. It was difficult to quantify the value of WiM data in 
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dollar terms, but there was evidence that WiM data already represented a strong value proposition under 
some specific circumstances.  

The value of WiM data is enhanced when combined with other data sources and made more accessible. 
Earlier feedback noted that the development of appropriate TMR methodologies would be required for 
stakeholders to fully leverage the value of WiM data, including automated and semi-automated data 
analytics delivering information to support decision making. 

As part of the identification of the organisational context, the project undertook several stakeholder 
engagements and also developed a draft Strategic Asset Management Plan (SAMP) which are outlined 
below. 

2.2.1 Stakeholder Engagement 

The value and opportunity of WiM was discussed with stakeholders from the areas of Transport Planning, 
Portfolio Investment and Planning, Program Delivery and Operations and Engineering and Technology. Key 
observations from these discussions include (Heldt et al. 2019, Eskew et al. 2021): 

 The outcomes that stakeholders are seeking from WiM include: 

– managing risk of vulnerable assets 
– informing the road manager 
– optimising return on investment 
– evidence-based decisions 
– credibility of decisions 
– investment priorities 
– commodity movement 
– freight productivity and network access 
– freight task quantification 
– compliance management. 

 The perception that WiM primarily supports enforcement, and since it is often not accurate enough for 
enforcement, it has limited value, is historic and inadequate in the contemporary context. Support for 
compliance management is one of many roles WiM data can play underpinning evidence-based decision 
making. 

 WiM currently is not extensively used in decision-making. Network coverage, accessibility and 
inadequate quality contribute to this status. Greater utilisation of WiM will follow if these limitations are 
overcome. This is the case from planning to heavy vehicle operations, to pavement design and 
maintenance, bridge access management and risk assessments. 

 The value proposition for WiM increases for all stakeholders as WiM data is integrated with other data, 
which include automatic number plate recognition (ANPR) data, permit vehicle data, classifier data, OBM 
data and IAP data. At present, on-board vehicle monitoring technologies are fitted to a small fraction of 
the heavy vehicle fleet. 

 Bridge risk management using WiM is a key opportunity to inform stakeholders of the risks associated 
with the movement of the cranes, low loaders and load platforms across the network. While these 
vehicles represent the greatest risk to bridges, the least amount of information is known about them (as 
they were not previously visible in the WiM and classifier data stream). 

 The transport industry knows more about what vehicles access the network than TMR. This is 
unacceptable. 

 Classifiers are cost effective for vehicle classification, but WiM provides mass data as well and is helpful 
in validating access by innovative vehicles. WiM provides data on all vehicles whereas OBM only 
provides data from participating vehicles. 
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2.2.2 Strategic Asset Management Plan for WiM 

The value proposition for WiM data is not well articulated globally because the focus is on collecting data to 
inform compliance rates rather than the optimal management of the road and bridge network and the heavy 
vehicles that provide transport services for the community.  

The gross value added (GVA) to the Queensland economy by the transport, postal and warehousing industry 
is $15.3 billion in the year you June 2017 with approximately 45% of the workforce associated with road 
transport (TMR 2018)6. Similarly, TMR’s annual expenditure on maintenance, preservation and operations is 
approximately $1 billion per year (TMR 2019). Despite this value and expenditure, WiM data is under-
utilised, under-valued and under-loved. 

Increasing data analytics capabilities are transforming the accessibility of information derived from WiM and 
related data technologies. There are increasing opportunities for WiM and related technologies to support 
evidence-based decisions by TMR in its role as the road manager by informing credible risk-informed 
decisions to generate the optimal return on both TMR’s and the transport industry’s infrastructure.  

Following stakeholder engagement, the project generated a draft Strategic Asset Management Plan (SAMP) 
for TMR WiM. The draft SAMP proposed a program of continual improvement and investment in data quality, 
accessibility and the application of WiM and related datasets over 10 years to respond to identified 
stakeholder needs (Heldt et al. 2019). While the structure and place of these initiatives requires 
reconsideration as TMR publishes its organisation-wide SAMP in early 2022, the imperatives for the 
recommendations have only increased since they were prepared. 

This report builds on the insights from the stakeholder feedback and the strategies of the draft SAMP to 
highlight opportunities, evaluate concepts and to develop prototype tools to point the way to extracting 
greater value from these datasets. 

2.3 Analysis of WiM and Classifier Data 

In the project’s third year (2019–20), Eskew et. al. (2021) undertook an exploratory analysis of WiM and 
classifier data (from January 2019 to February 2020).  

Several concepts to implement vWiM were developed and refined based on the consultation with 
stakeholders, which included: 

1. combining multiple types of data to provide an enhanced understanding of heavy vehicle traffic and 
support bridge access and asset management (as exemplified by the monitoring of the Gateway Arterial 
Flyover) 

2. combining WiM and classifier data to enable tracking for vehicles of interest across the network using 
only configuration and axle footprints. In many cases, measured mass at WiM sites along the trip taken 
provide mass information at the classifier sites where it was previously unavailable 

3. extrapolating mass data from WiM sites to classifier sites with similar traffic, thereby providing an 
understanding of the expected mass of vehicles at additional locations without having to install new 
sensors. 

 

6 Department of Transport and Main Roads, November 2018, Queensland Transport and Logistics Workforce Current 
and Future Trends Report, retrieved from https://www.tmr.qld.gov.au/-/media/busind/businesswithus/TLI-
Connect/trends/qtlw-current-future-trends-report-2018.pdf?la=en 
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Using WiM and classifier data, the characteristics of Class 1 low loaders, load platforms and cranes were 
also explored. The range of dimensions, configurations and locations of operation were identified as part of 
the process. The following were observed: 

1. Data interrogation rules could be developed to largely automate the sorting of WiM and classifier data by 
vehicle configuration with reasonable confidence, although some configurations were difficult to resolve 
as there were several possible alternative vehicle types. 

2. Generally low loader and load platform data can be interrogated from WiM data with a reasonable level 
of confidence.  

3. It is possible that OBM and ANPR data could be used to improve data confidence, but such data was not 
available for use. 

4. Mobile crane data were found to have some discrepancies in the measured mass data compared to the 
ATO data. 

5. It was possible to process WiM data such that reasonable estimates of WiM could be made at or 
extrapolated to classifier sites (vWiM). 

6. It was feasible to track unusual load platforms through the network. 

2.4 Complementary Data and Applications of vWiM 

In the final year of project S26 (2020–21), Karl et al. (2021) built upon the findings of Eskew et al. (2021) and 
merged additional data sources to identify how these additional data could enhance the value of WiM. 
Utilising the same TMR’s dataset of WiM and classifier data from the year 3 work, and with a particular focus 
on load platforms, low loaders and cranes, and their attributes and behaviour on the network, the following 
areas were investigated further: 

1. ATO crane data to better understand discrepancies identified previously 
2. use of the OBM data to benchmark WiM sites 
3. investigation of the use of WiM to estimate extreme load effects moments (M), shears (V) and support 

reactions (R) to inform bridge risk management 
4. extrapolation of WiM data to classifier locations 
5. evaluation of ANPR data for WiM sites 
6. vehicle tracking capability for Class 1 heavy vehicles.  

It was estimated that 97% of classifier sites could benefit from GVM extrapolation from WiM sites.  

PowerBI interfaces for visualising the detected trips were developed. These tools receive processed data 
from Python scripts, which output CSV files containing tracked trips, axle spacings and site locations. These 
tools allow the user to interactively view the axle mass and axle spacings at sites where the vehicle was 
detected.  

In combining complementary datasets, the project found that vWiM could be used to provide increased value 
to asset managers within TMR. Applications of vWiM investigated which could deliver value to TMR included: 

1. combining multiple types of data to provide an enhanced understanding of heavy vehicle traffic and 
support bridge access and asset management 

2. combining WiM and classifier data to enable vehicles of interest to be tracked across the network using 
configuration and axle footprints alone. In many cases measured mass at WiM sites along the trip taken 
provide mass information at the classifier sites where it was previously unavailable 

3. extrapolating mass data from WiM sites to similar classifier sites providing an understanding of the 
expected mass of vehicles at additional locations without having to install new sensors 

4. comparing known parameters between different sites to assess if their traffic is similar, to better 
understand where data can be expanded to gain additional insights.  
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3. Data Characteristics 

3.1 Introduction 

This section provides insights into the data collected by classifiers and WiM sites around the state using the 
project dataset as an example7. The focus on Class 1 heavy vehicles, which is detailed in Section 3.2, 
provided the context for the investigations of the potential insights related to Class 1 heavy vehicles from the 
WiM data (Section 3.3) and classifier data (Section 3.4). 

3.2 Identifying Low Loaders and Load Platforms 

Bridge monitoring identified the importance of understanding the bridge risks associated with low loaders 
and load platforms and confirmed that these were under-represented in the WiM and classifier data (Eskew 
et al. 2021).  

Low loaders and load platforms are uncommon, exhibit unusual vehicle configurations, often occupy multiple 
lanes and have higher axle loads and gross vehicle mass compared to freight vehicles, refer to Figure 3.1 for 
examples. These attributes make them difficult to reliably detect with pavement-based systems setup to 
collect data for the vast majority of vehicles that travel within their lane. Consequently, many of these 
vehicles are often labelled as erroneous in the WiM and classifier database. Zanardo and Heldt (2018) 

 

7 An overview of the project dataset (Jan 2019 – Feb 2020) can be found in Appendix B. 

Figure 3.1: Load platforms (left) and low loaders (right) are heavy and wide and it is important to understand 
the risk they pose to bridges 

  

  



 

Final  ǀ  NACOE S26: Virtual WiM – Enriching WiM and Enhancing Decisions (2018–21) 10
TC-710-4-4-8b 

recommended the measurement of ground contact width (GCW) low loaders and load platforms. The 
number of tyres on each axle also affects the axle loads accepted by road agencies. 

The width of wide low loaders and load platforms, which often occupy multiple lanes, also means that these 
vehicles appear in the WiM records as vehicle fragments travelling in adjacent lanes. Refinements to the 
post-processing algorithms stitched these fragments back together for this study, but further developments 
by WiM manufacturers to positively identify these vehicles would be welcome. These refinements yielded the 
previously hidden Class 1 dataset discussed below. 

3.3 WiM Data 

WiM sites record data on vehicles as they pass over the sensors. As a vehicle passes over the sensors, the 
following information is recorded: 

 time and location of the record 
 lane 
 configuration 
 vehicle speed 
 spacings between individual axles 
 gross vehicle mass (GVM) 
 axle group mass.  

TMR has over 60 WiM sites, however, only a subset of these is operational at any given time. The work in 
this project utilised WiM data from 23 sites rated as having an accuracy of Class C or above per 
MRTS203 (TMR 2020b). Zanardo and Heldt (2018) identified that TMR would benefit from ’more accurate 
WiM data more often’ across the state.  

This section identifies and discusses WiM site variation in configuration, axle spacing and axle mass 
measurements and measurement accuracy. To develop a better understanding of the limitations of WiM data 
quality, an assessment of the level of confidence which could be placed in conclusions drawn from the data 
was undertaken. 

3.3.1 Statistics of Semi-trailer Steer Axle Mass 

A common metric used to evaluate WiM data accuracy, is by an evaluation of the steer axle mass of a heavy 
vehicle, under the principle that these values are generally not influenced by the cargo being carried. TMR 
utilises vehicles with a '123' configuration as their baseline, which have steer axle masses commonly known 
to range between 5 to 6 t and a tight distribution. As part of the benchmarking, the following were 
undertaken: 

 network investigation 
 site specific statistical investigation. 

Network investigation 

Previous analysis of the axle group masses for 123 configuration vehicles (semi-trailers) in Queensland’s 
WiM data was performed by Vanderstaay (2006). Vanderstaay determined the steer axle mass, laden and 
unladen tandem axle mass, and laden and unladen tri axle mass for the 123 configuration vehicles. 

The project calculated the same axle group mass values from the 123 configuration records of the Austroads 
class 6+ supplied dataset within 0.1 t, shown in Figure 3.2. The axle group mass median values from 
Vanderstaay (2006) and the Austroads class 6+ vehicle dataset are shown in Table 3.1. The close match 
between values (less than 10% variation) provided an indication that the 123-configuration data from the 
supplied dataset was typical of TMR’s network heavy vehicle traffic and that the steer axle masses were 
relatively consistent over time. 
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Site-specific statistical investigation 

The consistency between the steer axle mass statistics for 123 configuration vehicles between the 
Vanderstaay paper (2006) and the project dataset support the use of steer axle masses for 123 vehicles to 
assess the quality and reliability of WiM data. The steer axle masses from supplied data for each WiM site 
were analysed over a period (one month), using the following steps: 

1. The Austroads Class 6+ project dataset (Appendix B) was filtered to only include the records for vehicles 
with a 123 configuration. 

2. Records were grouped by WiM site and by month of recording.  
3. For each WiM site during each month, the mean, median, 25% quartile, 75% quartile and ± 2 standard 

deviations were calculated for the steer axle masses. 

It is assumed that the steer axle masses for the 123 vehicle configurations should be relatively consistent 
over time, as illustrated in Table 3.1. When a WiM site is providing data which confidently represents the 
expected traffic it is reasonable to expect the 123 steer axle mass data to present as a normal distribution 
with tight tails with a mean around 5 to 6 t, such as the distribution shown in Figure 3.3.  

Figure 3.2: Distribution of 123 vehicle axle masses -- Austroads class 6+ dataset (2019–20) 

 

Table 3.1: Comparison of median axle group masses of 123 configuration vehicles 

Source 
Median steer 
axle mass (t) 

Median tandem axle group mass (t) Median tri- axle group mass (t) 

Unladen Laden Unladen Laden 

Vanderstaay (2006) 5.4 6.7 15.7 6.7 19.2 

Austroads class 6+ dataset 
(TMR 2019–20) 

5.5 7.0 14.6 6.8 20.2 
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In the event of accuracy concerns of a site’s calibration, it can be expected that the mean 123 steer axle 
masses will be lower or higher. An example of a distribution with a lower mean is shown in Figure 3.4. 

When the 123 steer axle mass data is not normally distributed with tight tails it may indicate that traffic is not 
normally distributed, that there are errors in the WiM data capture, or there have been changes in quality 
within the analysed month. An example dataset without a tight distribution is shown in Figure 3.5. 

Figure 3.3: Expected 123 steer axle mass distribution 

 

Figure 3.4: 123 steer axle mass distribution with calibration concerns 
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The project chose to assess if the 123 steer axle mass distribution was as expected. To accomplish this, box 
and whisker plots were created for the 123 steer axle masses for each month at each WiM site. An example 
is shown in Figure 3.6, additional plots at each site can be found in Appendix B. This shows the monthly 
mean (dark blue), median (light blue), 25% quartile (yellow), 75% quartile (orange) and ± 2 standard 
deviations (or 5% and 95% bounds) respectively (maroon and aqua). The black circles document the records 
that are outside the 5% and 95% bounds. These statistical parameters are also presented in a tabular form. 
These statistical parameters were chosen to assess whether each month of WiM was normally distributed 
and within the expected ranges with suitably tight tails. 

Figure 3.5: Unexpected 123 steer axle mass distribution  

 

Figure 3.6: Barcaldine WiM site monthly 123 steer axle statistics 
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When reviewing the box and whisker plots, seasonal variability was observed in the 123 steer axle masses 
at some sites, with larger masses recorded in the hotter summer months and smaller masses in the colder 
winter months. The seasonal variability can be clearly seen in the 2 bands (the 25–75% quartile band as well 
as the 5–95% band). Seasonal variations in environmental conditions can affect the sensors installed within 
the pavements. Culway type sensors are less susceptible to change in temperature, being installed on the 
soffit of culverts where temperatures are more stable. Some newer loggers include temperature sensors to 
account for temperature variation. However, accurate temperature correction requires multiple calibrations 
which capture the range of operating temperatures. 

More concerning though are the black dots outside of the 5–95% band. These indicate extremely low or high 
steer axle masses which are most likely erroneous and likely to be considered as implausible records for the 
steer axle mass (see especially records in Aug 2019, Figure 3.6). The existence of these dots outside the 5–
95% band most likely indicates the need for recalibration of the WiM and these dots reduced significantly by 
Sept 2019, possibly through calibration.  

Bridge live load models are interested in estimating extreme loads as well as understanding the typical live 
load and so an understanding of the accuracy of the estimates of extreme axle loads is important. The 
outliers in the Figure 3.3 histogram and Figure 3.6 box and whisker plots highlight the challenge of not 
achieving good results across the spectrum of load levels. From this perspective, the data in Figure 3.6 for 
February 2020 is excellent but the data leading up to an apparent intervention in August/September 2019 is 
of much lower quality. Similar patterns can be seen in additional plots in Appendix D of Eskew et al. (2021). 

Greater attention to and monitoring of the black dots (outliers), combined with temperature compensation for 
known seasonal variation impacts on WiM records can be used to improve the quality of the data from WiM 
sites, which would therefore meet the vision of ‘better data more often’ thereby providing bridge engineers 
greater confidence in estimating extreme loads using WiM data. 

3.3.2 Evaluation of WiM Data 

The benchmarking analysis showed it is possible to assess the quality of WiM data over time using the 
statistical parameters of the 123 steer axle mass. With this understanding, a method was developed to 
assess the level of confidence that the data represented the actual traffic. Due to inherent variation in steer 
axle mass, the method for assessing confidence used threshold values aiming to replicate the accuracy 
levels for WiM sites defined in MRTS203 Provision of Weigh-in-Motion System (TMR 2020b).  

Subsequently, WiM data could be filtered, using similar principles, identifying the records within the vehicles 
of interest dataset inspiring specified levels of confidence. While the use of this filter does not guarantee the 
accuracy of an individual record, it provides an understanding of the level of confidence inspired by the data 
from the site at the time the record was captured. Even if the sensors measure axle group loads with perfect 
accuracy, individual records must be treated with some degree of caution due to potential sources of 
variation in load including acceleration and braking, lane changes, debris on the road near the sensors and 
the possibility of wheels running in the shoulder off sensors. Outliers may also represent extreme events 
which should be considered due to the risk of deterioration to the network and should not be ignored but 
analysed separately and with due care. 

Using confidence filters can improve the plausibility of the observed (WiM data) and expected mass. The 
level of required confidence in the data is dictated by the specific use case and different use cases require 
varying levels of confidence. While it is possible to extract value from imperfect data, it is also the case that 
some applications require improved quality and reliability of data. 

The project revealed that it would be possible, based upon the described statistical measurements, to 
distinguish whether or not the 123 steer axle mass distributions exhibited: 

 a normal distribution with tight tails and a mean around 5 to 6 t 
 a normal distribution with a lower or higher mean  
 a non-normal distribution or a normal distribution without tight tails.  
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Assessing the distribution of 123 steer axle masses per month allowed the project to estimate the confidence 
inspired by data from a specific WiM site during a particular period. The low loader and load platform 
datasets could be filtered to obtain records from temporal periods where the confidence inspired by the data 
was acceptable. As WiM sites are already assigned accuracy classes based on their performance during 
calibration (as described in Appendix B), the confidence levels developed aimed to approximate these WiM 
accuracy levels repeatably. The development of the WiM data confidence levels and the application of these 
levels to the Austroads Class 6+ dataset are described below. 

WiM data confidence levels 

Based on the statistical investigation of the 123 steer axle masses, the project determined that it would be 
possible to assess whether the data from a WiM site over a temporal period could be confidently relied upon 
as representative of the expected traffic at the site. The project used the statistical parameters shown in 
Table 3.2 to assess the confidence in the data at a WiM site over a temporal period. These parameters 
provide an indication of the data mean and distribution shape.  

Each statistical parameter is assessed, by comparing it to confidence threshold values, to determine if the 
data confidently represented the expected traffic during each calendar month. The confidence thresholds for 
the mean and 25/75% quartiles were set as those values for the 123 steer axle masses from the entire 
Austroads Class 6+ dataset, based upon the assumption that the majority of the WiM data could be 
confidently relied upon. The distribution exhibited by the Austroads Class 6+ 123 steer axle masses is shown 
in Figure 3.7.  

The mean and 25/75% quartiles of the full Austroads Class 6+ 123 steer axle masses were 5.48 t, 4.58 t and 
6.11 t respectively.   

Table 3.2: WiM site confidence parameters 

Parameter Purpose 

123 steer axle mass mean  Assess if the 123 steer axle mass data is generally 
within the expected range. 

123 steer axle mass 25% and 75% 
quartiles  

Assess if the 123 steer axle mass distribution has tight 
tails.   

Difference between 123 steer axle mass 
mean and median  

Assess if the 123 steer axle mass is of a normal 
distribution. 
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The accuracy of mass readings at WiM sites are known to vary and this is measured at calibration, assigning 
classes A, B and C according to the accuracy of individual axle, axle group and gross vehicle mass 
measurements. The confidence thresholds were extended considering the axle group accuracy ranges 
providing the basis of the class A, class B and class C confidence levels. For the mean to median ratio, a 
constant 10% variation limit was imposed, based upon the class A axle group accuracy. The thresholds for 
each confidence level are described in Table 3.3. 

For each WiM site and calendar month, the calculated statistical parameters of the 123 steer axle mass were 
compared to the respective confidence thresholds for each parameter.  

Considering a potential use case which requires data quality of at least Class B accuracy, the data can be 
assessed as Confident, Calibration Concerns, or Unconfident (as defined in Table 3.4) relative to that target 
accuracy class by comparing the 123 steer axle masses to the Class B Confidence limits outlined in 
Table 3.3. Similarly, a use case which has a lower requirement for accuracy may consider more of the data 
to be 'Confident' or one requiring the higher accuracy may consider fewer sites to be 'Confident'. 

Figure 3.7:  Austroads class 6+ 123 steer axle mass distribution 

 

Table 3.3: WiM site confidence limits 

Parameter 

Austroads Class 6+ 123 
steer axle mass dataset 

statistic Class A confidence limit Class B confidence limit Class C confidence limit 

Axle group accuracy --  ± 10% ± 15% ± 20% 

123 steer axle mass mean 5.48 t 4.98–6.03 t 4.77–6.30 t 4.57–6.58 t 

123 steer axle mass 25% 
quartile 

4.58 t 4.16 t 3.98 t 3.82 t 

123 steer axle mass 75% 
quartile 

6.1 t 6.71 t 7.02 t 7.32 t 

Difference between 123 
steer axle mass mean and 
median 

--  10% 10% 10% 
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WiM data confidence  

The previously defined data confidence evaluation was performed on the Austroads Class 6+ dataset at 
each site and calendar month. The classifications are provided in Figure 3.8 to Figure 3.10. Using the data 
classified as ‘confident’, the mean tandem axle masses from the 123 vehicles are compared to the values 
determined by Vanderstaay (2006) and from the full Austroads Class 6+ vehicle dataset in Table 3.5. 

Table 3.5: Confident dataset 123 steer axle mass statistical comparison 

Source 
Per cent of 
WiM dataset 

Steer axle 
mass mean 

(t) 

Tandem axle group mass  

median (t) Tri- axial group mass median (t) 

Unladen Laden Unladen Laden 

Vanderstaay (2006) N/A 5.4 6.7 15.7 6.7 19.2 

Austroads Class 6+ 
dataset (TMR 2019–20) 

100% 5.5 7.0 14.6 6.8 20.2 

Class A confidence subset 
of dataset 

52% 5.5 7.1 16.0 6.8 20.4 

Class B confidence subset 
of dataset 

65% 5.5 7.0 15.9 6.8 20.4 

Class C confidence subset 
of dataset 

77% 5.4 7.1 15.1 6.8 20.0 

Table 3.4: WiM site reliability classifications 

Classification Basis Meaning 

Confident All parameters within Table 3.3 
limits. 

The 123 steer axle mass distribution was normal with short tails, as shown by 
the low mean to median ratio and quartile values within the defined bounds, 
with the average steer axle mass within a range of values demonstrating the 
accuracy of the site calibration. The data can be confidently used to represent 
the expected network traffic. 

Calibration Concerns Mean and/or quartile values 
outside of Table 3.3 limits, mean to 
median ratio under limit. 

The 123 steer axle mass possibly has a similar distribution as the expected 
network traffic, with the steer axle mass distributions of the expected normal 
distribution with short tails, but the mean steer axle mass is outside the 
expected values. This would indicate that the site calibration may no longer be 
accurate, however the recorded data is otherwise not erroneous.  

Unconfident Mean and median difference 
outside of Table 3.3 limits or no 
data recorded. 

The 123 steer axle mass likely has an unexpected distribution, with the steer 
axle mass distribution not exhibiting the expected normal distribution with short 
tails, as shown by the large mean to median ratio and/or wide quartile values. 
This designation is not designed to identify the cause or speak to the quality of 
the data, only indicate that the data within does not reliably represent the 
expected traffic on the network. 
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Figure 3.8: Austroads class 6+ class A confidence assessment 

 Legend 

   Confident   Calibration Concerns   Unconfident   Missing Data 
               

WiM / Month Jan-19 Feb-19 Mar-19 Apr-19 May-19 Jun-19 Jul-19 Aug-19 Sep-19 Oct-19 Nov-19 Dec-19 Jan-20 Feb-20 

WiM Site Barcaldine                             
WiM Site Belmont (North)                             
WiM Site Belmont (South)                             
WiM Site Boggabilla                             
WiM Site Burpengary                             
WiM Site Calcium                             
WiM Site Capella                             
WiM Site Cloncurry                             
WiM Site Freestone                             
WiM Site Gatton                             
WiM Site Hemmant                             
WiM Site Hotham Ck southbound                             
WiM Site Lytton                             
WiM Site Middle Creek                             
WiM Site Mt Isa                             
WiM Site Narangba                             
WiM Site Nudgee                             
WiM Site Oakey                             
WiM Site Oxenford northbound                             
WiM Site Southbrook                             
WiM Site Townsville Port Access Road                             

WiM Site Tugun                             
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Figure 3.9: Austroads class 6+ class B confidence assessment 

 Legend 

   Confident   Calibration Concerns   Unconfident   Missing Data 

               
WiM / Month Jan-19 Feb-19 Mar-19 Apr-19 May-19 Jun-19 Jul-19 Aug-19 Sep-19 Oct-19 Nov-19 Dec-19 Jan-20 Feb-20 

WiM Site Barcaldine                             
WiM Site Belmont (North)                             
WiM Site Belmont (South)                             
WiM Site Boggabilla                             
WiM Site Burpengary                             
WiM Site Calcium                             
WiM Site Capella                             
WiM Site Cloncurry                             
WiM Site Freestone                             
WiM Site Gatton                             
WiM Site Hemmant                             
WiM Site Hotham Ck southbound                             
WiM Site Lytton                             
WiM Site Middle Creek                             
WiM Site Mt Isa                             
WiM Site Narangba                             
WiM Site Nudgee                             
WiM Site Oakey                             
WiM Site Oxenford northbound                             
WiM Site Southbrook                             
WiM Site Townsville Port Access Road                             

WiM Site Tugun                             
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Figure 3.10: Austroads class 6+ class C confidence assessment 

 Legend 

   Confident   Calibration Concerns   Unconfident   Missing Data 

               
WiM / Month Jan-19 Feb-19 Mar-19 Apr-19 May-19 Jun-19 Jul-19 Aug-19 Sep-19 Oct-19 Nov-19 Dec-19 Jan-20 Feb-20 

WiM Site Barcaldine                             
WiM Site Belmont (North)                             
WiM Site Belmont (South)                             
WiM Site Boggabilla                             
WiM Site Burpengary                             
WiM Site Calcium                             
WiM Site Capella                             
WiM Site Cloncurry                             
WiM Site Freestone                             
WiM Site Gatton                             
WiM Site Hemmant                             
WiM Site Hotham Ck southbound                             
WiM Site Lytton                             
WiM Site Middle Creek                             
WiM Site Mt Isa                             
WiM Site Narangba                             
WiM Site Nudgee                             
WiM Site Oakey                             
WiM Site Oxenford northbound                             
WiM Site Southbrook                             
WiM Site Townsville Port Access Road                             

WiM Site Tugun                             
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3.3.3 Key Findings  

The results of the analysis of the 123 steer axle masses revealed: 

 The 123 steer vehicles have not significantly changed mass profile since 2006, supporting their use as a 
long-term metric for estimating WiM accuracy and confidence. 

 Seasonal variability in the mass readings is evident at certain WiM sites. 
 It is easy to observe from statistical parameters (mean, median and quartiles) when the steer axle 

masses: 

– follow the expected values and distribution 
– follow the expected distribution shape but with values which had been shifted higher or lower 

(indicating sensors drifting out of calibration) 
– did not follow the expected distributions (may indicate poor data quality). 

 The existence of records (black dots) outside of the 5–95% band most likely indicate the need for 
recalibration of the WiM site while the seasonal variations in the 25–75% and 5–95% bands provide 
opportunities for temperature compensation based on known seasonal effects on WiM data at the 
specific site. 

 123 vehicle steer axle mass can be used to assess the confidence inspired by data collected at a WiM 
site over a period of time.  

 The confidence assessment can be used to filter the data to provide increased confidence in subsequent 
analyses of vehicles of interest such as low loaders and load platforms or for specific use cases. 

As bridge engineers are interested in estimating extreme loads to inform assessments, there is considerable 
opportunity to improve WiM data at the extreme loads, by paying greater attention to and monitoring of the 
outliers (black dots in Figure 3.6), combined with temperature compensation for known seasonal variation 
impacts on WiM records. This recommendation would result in ‘better data more often’ and improve the 
confidence bridge engineers have in WiM data. 

3.4 Classifier Data 

Like WiM sites, classifiers record vehicles passing a point on the road. The same information is recorded at 
classifiers as at WiM sites except mass is not recorded. As a vehicle passes over the sensors, the following 
information is recorded: 

 time and location of the record 
 lane 
 configuration 
 vehicle speed 
 spacings between individual axles. 

In this report, the term 'classifier data' refers to the classifier portion of the data from both classifier and WiM 
sites. 

3.4.1 Identifying Vehicles of Interest within Classifier Data 

One of the initial challenges with the classifier data was the identification of the Class 1 vehicles of interest. 
Logical rules were developed based on a review of Heavy Vehicle National Laws (HVNL) and internal 
access assessment procedures, to identify low loaders, load platforms and cranes within the larger datasets.  



 

Final  ǀ  NACOE S26: Virtual WiM – Enriching WiM and Enhancing Decisions (2018–21) 22
TC-710-4-4-8a 

The project dataset includes 27,000,000 Austroads Class 6+8 vehicles of which 393,500 were identified as 
low loaders or load platforms including 45,779 WiM records after application of data quality filters to remove 
records where confidence in the data is low9. Filtering the raw Austroads Class 6+ data, in this way for 
vehicles of interest, reduced the size of the working dataset (approximately 2% of the total dataset) 
facilitating simpler data manipulation and analysis. 

An evaluation of classifier data, to identify the vehicles of interest is provided in the following section. This 
looked at: 

 axle spacing measurement accuracy 
 axle spacing impact on configuration 
 axle spacing accuracy impact on classification 
 incorrect configuration. 

Axle spacing measurement accuracy 

The axle spacings for larger heavy vehicles can act as a signature, which are important to identify and 
understand their impact on the network as they are often carrying larger loads. The axle spacing 
measurement accuracy plays a big role in being able to accurately identify this individual footprint, as the 
more accurate the measurement, the more confidence that it is the same vehicle at another location. If it is 
known where the vehicle has been it is possible to identify the potential impact the vehicle may have had on 
the infrastructure it has crossed. 

While investigating the accuracy of the axle spacing measurements, a review was conducted on the spacing 
thresholds used to identify separate axle groups. As per the Austroads vehicle classification system 
(Austroads 2006), adjacent axles are considered to be part of the same group if they are ≤ 2.1 m from each 
other. However, during this investigation the project noted deviations from this rule at some sites. To 
investigate the axle group spacing rules for each WiM and classifier site, the project identified the maximum 
axle spacing between two adjacent axles within any axle group and the minimum axle spacing between 
axles of different groups for each site. This allowed the project to establish the axle group cut-off rule at each 
site. Many sites had rules which, based upon the available data, conformed to the Austroads axle group rule 
(e.g. 14C Ch 17.22 – West Hughenden or WiM Site Gatton). However, some sites had noted axle group 
thresholds higher (e.g. WiM Site Lytton or 180 m West of Macgregor Street) or lower (e.g. WiM Site 
Hemmant or South of Progress Rd on the Ipswich Motorway) than those prescribed by Austroads. 

The minimum axle spacing between 2 axle groups, maximum axle spacing within an axle group and the axle 
group threshold rule implied by the records are displayed in Table 3.6 for a sample of sites representing: 

 axle group thresholds lower than the Austroads rule  
 axle group rules conforming to the Austroads rule (axle group cut-off of ≤ 2.1 m)  
 axle group thresholds higher than the Austroads rule. 

Axle group rules are coded into the site data loggers and pre-determined in the data received by TMR, 
however the axle groupings can also be re-calculated directly from the axle spacing data in a post-process.  

 

8 Austroads Class 6+ vehicles or Class 6+ vehicles refers in this section to heavy vehicles with at least three axle groups. 
9 Records with speeds greater than 150 km/h, axle spacings less than 1 m, and periods when steer-axle masses of semi-trailers were 

far from the expected range were removed. 
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Axle spacing impact on configuration 

The definitions in Table 3.7 are used throughout the document, for further details refer to Appendix A. 

Table 3.7: Common terms 

Term Definition 

Austroads class 6+ A vehicle with ≥ 3 axle groups and ≥ 3 axles.  

Refer to Figure A.1 for more details. 

Classification The type of vehicle which is identified (e.g. truck, crane, truck and dog, low loader, load 
platform, B-double, etc.) based on a vehicle classification scheme, e.g. the Austroads 1994 
12-bin vehicle classification scheme (Austroads 2000), HVNL classification scheme. 

Classifier In this report, the term 'classifier data' refers to the classifier portion of the data from both 
classifier and WiM sites. 

Configuration 
(of a vehicle) 

A string representing the number of axles in each successive axle group of a vehicle 
combination. (e.g. ‘1223’) 

Combination A group of vehicles consisting of a motor vehicle such as a prime mover or rigid truck towing 
one or more other vehicle units such as a semi-trailer or trailer. 

Source: National Heavy Vehicle Regulator (NHVR) (2016a). 

Vehicle type The common language description of the vehicle (e.g. truck, crane, truck and dog, low loader, 
load platform, B-double, etc.), closely aligned to a vehicle classification scheme. 

The configuration of a record represents the number of axles in each axle group. Variations in axle spacing 
accuracy and axle group rules impact the calculated configuration for a record. Examples of incorrectly 
identified crane configurations, based on manufacturer specifications, using the variations in axle spacing 
accuracy are shown in Table 3.8. A number of inconsistencies in the recorded configurations were identified 
in the supplied dataset. Subsequently the configurations were re-calculated for each record using the axle 

Table 3.6: Representation of types of axle group cut-off rules  

Classifier and WiM sites 

Minimum axle 
spacing between 
2 axle groups (m) 

Maximum axle 
spacing within a 

group (m) 
Axle group cut-off 

rule (m) 

Relation to 
Austroads axle 

group rule 

WiM Site Hemmant 2.01 2 ≤ 2.01 Lower 

WiM Site Belmont (south) 2.01 2 ≤ 2.01 Lower 

WiM Site Belmont (north) 2.01 2 ≤ 2.01 Lower 

South of Progress Rd on Ipswich Motorway 2.07 2.06 < 2.07 Lower 

17B-20 m E of Acacia Ave (PS) Loop/Piezo 2.09 2.08 < 2.09 Lower 

14C Ch 17.22 – West Hughenden 2.1 2.09 < 2.1 Conforming 

WiM Site Gatton 2.1 2.09 < 2.1 Conforming 

WiM Site Nudgee 2.1 2.09 < 2.1 Conforming 

14E Ch 6.33 – 2.7 km west of Int 14E/78A 2.1 2.09 < 2.1 Conforming 

15B Ch 50.9 km (west of Gunpowder Int) 2.1 2.09 < 2.1 Conforming 

WiM Site Barcaldine 2.1 2.09 < 2.1 Conforming 

5807 Ch 4.88 km – south of Julia Creek 2.11 2.09 < 2.11 Conforming 

30 m north of Tallebudgera Creek Overflow 2.11 2.09 < 2.11 Conforming 

180 m west of Macgregor Street 2.11 2.1 ≤ 2.1 Conforming 

WiM Site Lytton 2.31 2.3 ≤ 2.3 Higher 

WiM Site Boggabilla 2.31 2.3 ≤ 2.3 Higher 

WiM Site Hotham Ck southbound 2.31 2.3 ≤ 2.3 Higher 

WiM Site Tugun 2.35 2.3 ≤ 2.3 Higher 
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spacing data and the Austroads classification rules. While this did not address errors associated with 
measurement errors, it did address concerns regarding varying axle group rule cut-offs implemented at 
different sites. 

Additionally, it was noted during the project’s stakeholder engagement that low loaders, load platforms and 
cranes can have retractable axles. If a vehicle travels over a classifier or WiM site with an axle retracted, that 
would impact its classification and configuration.   

Impact of axle spacing measurement tolerance on vehicle classification 

The effect of axle spacing measurement tolerance on the classified configuration was investigated to better 
understand how improving the accuracy of axle spacing measurements may impact classification. Vehicle 
counts for common low loader and load platform configurations are shown in Table 3.9, determined using 
two different axle spacing measurement tolerances. These are:  

1. the nominal ± 200 mm measurement tolerance used by TMR 
2. a tighter tolerance of ± 100 mm.  

Changing the assumed axle spacing tolerance from ± 200 mm to ± 100 mm reduced the total count of 

vehicles of interest (low loaders and load platforms) by 66% (
మబబିభబబ

భబబ
). This demonstrates that the axle 

spacing measurement accuracy impacts the interpretation of the data. Better understanding of the 
measurement accuracies enables improved analysis of the datasets and increases the value of the data for 
certain use cases. 

Table 3.9: Effect of axle spacing measurement tolerance on low loader and load platform vehicle counts 

Configuration 
Vehicle count for 

± 200 mm tolerance 
Vehicle count for 

± 100 mm tolerance 

% difference 
(
𝒏𝟐𝟎𝟎−𝒏𝟏𝟎𝟎

𝒏𝟐𝟎𝟎

) 

125 1,501 814 −46% 

1,225 1,318 630 −52% 

225 540 276 −49% 

126 1,112 754 −32% 

1,226 335 167 −50% 

127 1,200 777 −35% 

1,227 456 291 −36% 

128 712 448 −37% 

1,228 152 85 −44% 

129 236 146 −38% 

1,229 14 13 −7% 

Table 3.8: Effect of measurement accuracy tolerance on the configuration 

Crane 

Axle 
spacing 1 

(m) 

Axle 
spacing 2 

(m) 

Axle 
spacing 3 

(m) 

Axle 
spacing 4 

(m) 

Axle 
spacing 5 

(m) Axle group rules 

Potential 
configurations 

based upon axle 
group rules and 

tolerances 

LIEBHERR LTM1090 
all-terrain crane 

2.54 1.65 2.44 1.65 - Axle group spacing 
cut-off: 

< 2.1 m, < 2.3 m 

122 or 14 

Demag AC 205 
all-terrain crane 

1.7 2.0 1.65 – – Axle group spacing 
cut-off: < 2.1 m 

22 or 4 

LIEBHERR LTM 1160 
all-terrain crane 

2.85 1.7 2 1.7 1.7 Axle group spacing 
cut-off: < 2.1 m 

15 or 123 

 

Note: Assumed axle spacing tolerance of ± 200 mm. 
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Configuration 
Vehicle count for 

± 200 mm tolerance 
Vehicle count for 

± 100 mm tolerance 

% difference 
(
𝒏𝟐𝟎𝟎−𝒏𝟏𝟎𝟎

𝒏𝟐𝟎𝟎

) 

120 422 316 −25% 

1,220 219 162 −26% 

12A 48 44 −8% 

All 8,265 4,923 −40% 

Incorrect vehicle classification 

While the project’s procedure for identifying the configuration in a record improved the accuracy of identifying 
vehicles of interest, errors were still noted throughout the dataset. Different vehicle types (refer to Appendix 
A for definition) can have the same configurations and spacing, which means distinguishing vehicle groups 
using axle spacing rules can be challenging. An example of the potential for incorrect classification is shown 
in Figure 3.11. Each of the three vehicles have nearly indistinguishable axle spacing geometries and were 
classified as low loaders. However, through analysis of available photos from a nearby camera, it was noted 
that only one of the records was a low loader, with the other two records identified as a truck and dog and a 
custom trailer. These incorrect classifications are likely common throughout the low loader dataset for 
vehicles without a dolly, with lower frequency amongst the rarer load platform configurations.  

The use of ground contact width would add another axis which would help to improve the differentiation of 
vehicles, depending on the accuracy of the measurements. 
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The project noted that at the Tugun WiM, the axle spacing measurements had a resolution of ± 50 mm 
(i.e. measurements would be 2.30 or 2.35 m but not in-between). This occurrence seemed to be isolated to 
this site.  

3.4.2 Evaluation of Classifier Data 

WiM and classifier data were analysed and reviewed to understand their applications and limitations. The 
technical specification for WiM sites (MRTS203 TMR 2020b) calls for an accuracy of ± 15 mm on axle 
spacing. Conversely there is no similar requirement currently specified for classifiers (MRTS251 TMR2017), 
which requires > 95% accuracy on the classification of vehicles using Austroads vehicle types. Operationally 
TMR assumes an accuracy of ± 200 mm due to variability of axle spacing data between classifier and WiM 
datasets. 

Inconsistencies were identified in configurations automatically computed by the proprietary installations, 
which appear due to differences in the logic implemented in the data loggers. To ensure consistency, 
configurations were re-calculated based on Austroads vehicle classification rules (Austroads 2006), such 
that axles were grouped if they were ≤ 2.1 m from each other. 

Figure 3.11: Inaccurate vehicle type identification using configuration and axle spacing rule 
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3.4.3 Key Findings 

The project investigated the accuracy of the axle spacing measurements and configurations, and explored 
the possibility of identifying vehicles of interest using classifier data. Key findings from this investigation 
included: 

 Axle spacing accuracy operationally ranges by ± 200 mm. Additionally, not all WiM and classifier sites 
report configurations in accordance with the Austroads axle group rules. By re-calculating the 
configurations from the measured axle spacings, the project was able to improve consistency in the 
configurations in the dataset. 

 Low loaders and cranes were noted as having near identical axle spacing geometries to other types of 
vehicles, highlighting the value of combining video footage with the WiM and classifier data. 

 The presence of retractable axles on the vehicles of interest could lead to incorrect configurations for 
records. 

While incorrectly identified configurations exist within the vehicles of interest datasets, the project 
acknowledged the issues and developed the conclusions with this in mind. Future work should be devoted to 
improving the axle spacing measurement accuracy. Doing so will increase the number of potential 
applications of the data and improve the identification and characterisation of vehicles of interest. 
Applications and findings from the analysis of the classifier data from Class 1 heavy vehicles are discussed 
further in Section 4. 

3.5 Summary 

By improving WiM data processing, TMR has increased visibility of low loaders and load platforms on its 
network for the first time. The project team was provided access to the improved dataset and the classifier 
and WiM data were analysed.  

Classifier data 

Axle spacing measurement and configuration accuracy was investigated, and the possibility of identifying 
vehicles of interest using classifier data was explored. It was found that in practice the axle spacing accuracy 
is approximately ± 200 mm. Additionally, not all WiM and classifier sites use the Austroads axle group cut-off 
rules (≤ 2.1 m). The project was able to address concerns with varying axle group rules through 
re-calculation of axle groups and configuration using measured axle spacings, improving the identification of 
vehicles. Filters were also developed to identify vehicles of interest from the larger WiM and classifier 
datasets including low loaders, load platforms and cranes. 

WiM data 

An analysis of WiM steer axle mass data from 123 vehicle configurations was undertaken. It was found that 
steer mass profiles have not changed much since 2006. Seasonal variability and black dot outliers were 
found in the dataset. It was noted that calibration for temperature compensation and the use of the black dot 
outliers as an indication of the need to re-calibrate the WiM would result in ‘better data more often’ for TMR 
and bridge engineers specifically who are interested in the extreme loads. 

As a result, the project: 

1. benchmarked the WiM records using 123 vehicle configuration steer axle masses  
2. developed filters based on the benchmarked WiM accuracy to isolate records deemed to represent the 

actual heavy vehicle traffic stream with confidence. 

The additional processes undertaken in the classifier and WiM data above enabled (i) increased confidence 
in the WiM data collected at a WiM site over a period of time and consequently (ii) increased confidence in 
the derived low loader and load platform datasets. Applications and findings from the analysis of the 
classifier data from Class 1 heavy vehicles are discussed further in Section 4. 
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4. Characteristics of Class 1 Heavy Vehicles  

4.1 Introduction 

This section utilises the WiM dataset described in Section 3 to investigate and report the characteristics of 
Class 1 Heavy Vehicles. It builds upon the analysis and filters detailed in Section 3 which increased the 
confidence in the WiM and classifier data and enabled improved sorting of vehicles of interest from the WiM 
and classifier datasets used in this project. 

The high risk posed by low loaders, load platforms and heavy mobile cranes to structures on the TMR road 
network necessitates additional risk management activities specifically for these vehicles. However, limited 
operational data has historically been available on these vehicles of interest aside from the permit 
applications and data collected by transport inspectors. This has led to decisions being made without access 
to good field information about the actual vehicles accessing the network compared to the permit 
applications. 

4.2 Data Filters 

With the improvements to the WiM processing algorithms as described in Section 3, a filtered WiM and 
classifier dataset is available for these vehicles of interest. An analysis was undertaken for three groups of 
vehicles, specifically low loaders, load platforms and cranes (Sections 4.3, 4.4 and 4.5). The following 
sections provide a summary of the findings for each group of vehicles based on the quality data subsets 
discussed in this section. 

Data filters were established to extract low loaders, load platforms, and cranes from the datasets. In addition, 
vehicles with 123 configurations were extracted to facilitate data quality considerations.   

To extract the relevant data, filters were developed to: 

 extract a subset of the data that satisfied the quality requirements for a specific application from the 
Austroads Class 6+ vehicles dataset 

 extract low loader and load platform records from the Austroads Class 6+ vehicles dataset  
 extract vehicles with a 123 configuration from the Austroads Class 6+ vehicles dataset 
 extract crane records from the full WiM and classifier datasets.  

The low loader, load platform and crane datasets were interrogated using filters based upon key parameters 
to support the investigations undertaken in this project. These filters are discussed and reported in 
Section 4.2.2 and in Eskew et al. (2021). The details of the key filters identified within this section include: 

 GVM 
 steer axle mass 
 ‘A’ distance 
 WiM data confidence 
 site type (WiM or classifier) 
 speed 
 configuration 
 vehicle characteristics 
 time range 
 axle spacing 
 vehicle count. 
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4.2.1 Approach 

The data filters used to interrogate the data are detailed below. 

Gross combination mass (GCM) 

To improve the understanding of vehicle GCMs likely to cause damage to assets on the road network, filters 
were developed in the data visualisations. As classifiers record a GCM value of 0, GCM was also used as a 
filter between classifier and WiM records.  

Steer axle mass 

For low loaders, load platforms and ‘123’ semitrailers (but not mobile cranes), the steer axle mass for specific 
combination vehicles was found to be relatively consistent, regardless of vehicle loading. This makes it a key 
metric for evaluating the quality of WiM records. A range of steer axle masses were used as filters to the 
dataset throughout this project.  

‘A’ distance 

For low loaders, the ‘A’ distance, or the length between the centreline of the last axle of the prime mover and 
the first axle of trailer (or last axle of the dolly and the first axle of the trailer where a dolly is present) as 
indicated in Figure 4.1, limits the total mass limit for the vehicle (HVNL Multi-State Class 1 Load Carrying 
Vehicles Mass Exemption Notice 2016 Amendment Notice 2019 (No. 1)). The mass restrictions assist in 
managing the risk of failure of road structures associated with carrying the large indivisible loads. This project 
calculated the ‘A’ distance for low loaders and load platforms from the WiM and classifier data based upon 
their measured axle spacings. Filters were developed for the data visualisation based upon the calculated ‘A’ 
distance values. 

WiM data confidence 

Data confidence is a metric developed during this project to evaluate if the mass data from a WiM station 
confidently represented the expected heavy vehicle traffic at a site over a period of time, based upon the 
steer axle mass of 123 vehicle configuration records at the site. Based on the WiM confidence a filter was 
developed, as described below. 

Analysis of the 123 steer axle masses at WiM sites provided an assessment of the project’s confidence in 
the data reflecting the expected traffic over time. This information was utilised to develop a confidence data 
filter for the low loader and load platform dataset. The filter excluded data from WiM sites collected during 
months classified as ‘Calibration Concerns’ or ‘Unconfident’, per Table 3.5.  

Figure 4.1: ‘A’ distance for a low loader 

 

Source: HVNL Multi-State Class 1 Load Carrying Vehicles Mass Exemption Notice 2016 Amendment Notice 2019 (No. 1). 
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Site type (WiM or classifier) 

The data recorded at individual WiM or classifier sites varied based upon accuracy, vehicle traffic and other 
factors. Filters were therefore developed to isolate records based upon site type, site accuracy, and for 
specific sites on the network. 

Speed 

Vehicle speed impacts the dynamic amplification of the load over a structure, potentially causing increased 
deterioration of roadways. Filters were developed to isolate a range of recorded speeds, to better understand 
the relationship between travel speed and other characteristics such as vehicle type.  

Configuration 

Different types of vehicles, as identified by their configurations, exhibit different behaviours on the network. A 
filter was developed to identify the records related to specific configurations and allow for an interrogation 
into how the different types of vehicles utilise the road network.  

Vehicle characteristics 

This project identified various low loader and load platform vehicle characteristics, including: 

 steer axle type – single or tandem axles 
 dolly type 
 trailer axles. 

From the crane database, the project identified make and model of crane based upon the developed crane 
classification rules (see Appendix N, Eskew et al. 2021). 

Time range 

Heavy vehicle traffic, and the cargo carried, can depend on the time of day and/or time of year. Additionally, 
some WiM sensors can be impacted by changing environmental factors such as temperature. Filters were 
therefore developed to isolate records based upon a range of dates and times.  

Axle spacing  

The minimum axle spacing of low loaders and load platforms in accordance with the Heavy Vehicles 
National Laws is 1.2 m. Based upon this information, a filter was developed to remove records with an axle 
spacing of under 1.0 m, with a 0.2 m variation allowed to account for variations in measurement accuracy.  

Vehicle count 

The number of identified vehicles required to develop findings was identified based on the use of the data. 
This was particularly relevant for configurations, where configurations with minimal records were indicators of 
outliers (excluded from the general data analytics due to their rarity across the network) or erroneous data. 
Filters were developed to exclude configurations which did not meet the minimum record count 
requirements. 
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4.2.2 Application 

Low loader and load platform vehicle records were extracted and quality filtered from the supplied Austroads 
Class 6+ dataset based upon their axle spacings as defined in Heavy Vehicles National Laws 
(NHVR 2016b). The algorithm used to extract these records included an axle spacing tolerance of ± 0.2 m to 
allow for the measurement accuracy range. The data was filtered based on the similarities between the WiM 
and classifier datasets. Due to classifiers not measuring axle mass, this was not used as a filter criterion. 

Crane records were extracted from the full WiM dataset using an algorithm based upon configuration, similar 
to the filter used for low loaders and load platforms. To filter light vehicles out of the analysis any vehicle less 
than 20 t GVM was excluded. Filter criteria were developed for specific crane models found in the 
Intelligence Access Program (IAP) crane register based upon axle spacings identified from the relevant 
manufacturers’ specifications. Overall, 83 crane axle spacings were incorporated, further information can be 
found in Appendix N of Eskew et al. (2021).  

4.2.3 Observations 

A review of the filtered dataset determined that:  

 Some rigid truck and dog vehicles have been included in the dataset as low loaders due to their similar 
configuration (1222) and axle spacing. There is no way of reliably separating these two groups using 
configuration and axle spacing alone. 

 Many 4 axle twin-steer rigid trucks were identified as cranes due to similarities in their axle spacings 
(models TADANO GT550/E-1 and GT550/E-2, LINKBELT HTC86100, GROVE TMS9000E, and KATO 
NK500, NK550 and SL-700R). These crane models were not included in the crane dataset to limit the 
pollution of the results by the twin-steer rigid truck records.  

 The records from the classifier 5807 Ch 4.88 km – south of Julia Creek were excluded as observed data 
quality was low (see Appendix E.4 of Eskew et al. 2021). 

In order to remove additional outlying low loader and load platform records individual records with steer axle 
masses outside of ± 2 standard deviations (5% – 95%) of the 123-steer axle mass mean (3.34 to 8.51 t), 
adjusted based upon the confidence class, were excluded. For each confidence class this filter equated to: 

 Class A Confidence: 3.04 to 9.36 t  
 Class B Confidence: 2.90 to 9.79 t 
 Class C Confidence: 2.78 to 10.21 t. 

The additional filter was utilised to provide further confidence that the supplied records reflect the expected 
low loader and load platform traffic at the WiM site and exclude outliers and erroneous data. It was found 
that the low loader and load platform vehicles steer axle masses are generally similar to those of the 
123 configuration vehicles, as shown by the similarity in mean steer axle masses in Table 4.1. Therefore, 
using the 123-steer axle mass ± 2 standard deviations was deemed to be acceptable for developing limits for 
the low loader and load platform steer axle masses. 
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Table 4.1: Confidence dataset 123 steer axle masses comparison for configurations with over 200 records 

Configuration 

Austroads class 6+ dataset Class A Confidence Class B Confidence Class C Confidence 

Steer axle 
mass mean (t) 

Record count Steer axle 
mass mean 

(t) 

Record count Steer axle 
mass mean 

(t) 

Record 
count 

Steer axle 
mass mean 

(t) 

Record 
count 

123 5.48 4,025,756 5.47 2,167,825 5.47 2,709,837 5.43 3,162,876 

1222 5.97 52,868 5.89 27,378 5.89 34,189 5.80 41,470 

1212 5.41 21,207 5.33 10,770 5.24 13,309 5.18 14,996 

12222 6.35 12,808 6.10 5,857 6.13 7,896 6.06 9,850 

124 5.32 16,880 5.40 10,953 5.43 13,057 5.42 14,325 

1221 5.78 5,412 5.84 2,543 5.81 3,200 5.74 4,013 

2222 5.58 346 – – 4.84 205 4.81 240 

125 6.23 453 – – 5.95 246 6.08 308 

1225 5.85 301 – – 5.87 212 5.95 244 

127 6.55 286 – – – – 6.31 226 

12221 6.54 211 – – – – – – 

126 6.30 325 – – 6.27 249 6.33 286 

Application of the described filter created a ‘confident’ dataset, which provides increased confidence in the 
outcome of specific use cases reflecting expected loads from low loader and load platform vehicles. The 
Confidence filters reduced the original low loader and load platform WiM records (112,319) as follows: 

 Class A Confidence: 58,879 records (52%) 
 Class B Confidence: 73,479 records (65%) 
 Class C Confidence: 86,959 records (77%). 

4.3 Low Loaders 

Low loaders are prime movers hauling a trailer with a deck no more than 1.2 m above the ground, which may 
or may not include a dolly (Appendix A, Eskew et al. 2021). These vehicles carry indivisible loads on TMR’s 
network and are lower to the ground so they can provide increased clearance to the undersides of 
structures.    

WiM and classifier data for the low loaders was sorted from the larger datasets. Using the information from 
all available sites across the network, analyses were performed using the data filters identified in Section 4.2 
and the result summarised in this section. 

4.3.1 Truck and Dogs Incorrectly Identified as Low Loaders 

In this project, vehicles were classified based upon their axle footprints. Due to the similarities between the 
axle spacing between certain low loader configurations and truck and dog vehicles, a large number of truck 
and dogs are likely to have been included in the low loader dataset, as discussed in the incorrect vehicle 
classification subsection of Section 3.4.1. The potential inclusion of truck and dogs, particularly for low 
loaders without dollies, should be accounted for when drawing conclusions from the analyses that follow. 

4.3.2 Configurations 

The configuration generally dictates the cargo type and volume of cargo the vehicle carries as well as how it 
operates on the network. The different configurations classified as low loaders by the project are displayed in 
Figure 4.2 and Figure 4.3. Most of the 380,000 identified low loaders were of the configurations 1222, 1212, 
12222, 124, 1221 or 2222. The filter for combinations containing low loader or low-loader-like trailers focused 
on the front part of the vehicle (allowing for prime movers, with or without dollies) followed by a low loader 
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trailer. Consequently, some longer configurations may represent other vehicle types with indistinguishable 
axle spacing geometry or records containing a low loader followed closely by another vehicle with the 
classifiers failing to split the following vehicle from the leading vehicle. 

 

4.3.3 Spatial Occurrences 

A key question posed to the project regarding the low loaders was ‘where are they?’. To address this 
question, the project investigated the locations where the low loader records occurred. The map in Figure 4.4 
shows the locations of the WiM and classifier sites, with the colour of each marker indicating the number of 
low loader records identified between 01/01/2019 and 09/02/2020. The sites with the highest density of low 
loader records occur in South East Queensland, near Brisbane. Away from Brisbane there were sites with 
between 2,501 and 5,000 records near Townsville and Mackay. The remaining sites had under 2,500 low 
loader records each. 

Figure 4.2: Low loader configurations – configurations with a frequency over 1  

Figure 4.3: Low loader configurations by percentage – configurations with a frequency over 1  
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4.3.4 ‘A’ Distance 

According to the HVNL the allowable GCM of low loaders in Queensland is generally limited by the mass 
limit on the structure, road or up to 59.5 t (60 t with a complying steer axle). The 59.5 t limit is reduced for low 
loaders by 1 t for every 0.3 m increment of ‘A’ distance under 6.0 m (HVNL Multi-State Class 1 Load 
Carrying Vehicles Mass Exemption Notice 2016 Amendment Notice 2019 (No. 1)).  

For this project the ‘A’ distance was calculated as the distance from the back axle of the prime mover to the 
first axle of the low loader, or if the vehicle included a dolly as the back axle of the dolly to the first axle of the 
low loader (refer Figure 4.1).  

The ‘A’ distances for low loaders, in 0.5 m bins, are shown in Figure 4.5, where the blue bars are the 
distributions of records (left scale) and the orange line is the cumulative distribution (right scale). 

Figure 4.4: Density of low loader records at WiM and classifier sites within dataset 
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As the ‘A’ distance governs the low loader GCM limit and the effects induced in bridges, the project 
investigated if there was a relationship between GCM and ‘A’ distance. Figure 4.6 shows that there is a slight 
increase in mean GCM with increasing the ‘A’ distance. Of the 72,504 class B confidence low loaders 
identified, 26% (19,100) had a recorded ‘A’ distance under 6 m, and so are subject to reduced GCM limits. 
Only 0.2% (132) of those vehicles had a recorded GCM over 59.5 t. Given bridge risk management is 
concerned about extreme events as well as the average, continuing to monitor ‘A’ distance is valuable.  

Figure 4.5: Low loader ‘A’ distance histogram and corresponding cumulative distribution 
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4.3.5 Temporal Traffic 

The project analysed the low loader records for any temporal patterns by breaking the records down into the 
day of week (Figure 4.7) and hour of day (Figure 4.8). As was expected, most of the vehicles are noted as 
traveling during the weekday and between 6 am and 6 pm.  

 

Figure 4.6: Confidence B low loader ‘A’ distance by GCM 

 

Figure 4.7: Low loaders by day of the week – percentage 
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4.3.6 Vehicle Speed  

Analysis of the travel speed of the low loaders revealed that approximately 85% of the low loaders recorded 
speeds between 70 and 110 km/h. As the speed limits of these roads were typically 80 or 100 km/h, it can be 
inferred that most low loaders will travel at the speed dictated by traffic. A histogram and the cumulative 
distribution of the recorded low loader vehicle speeds are presented in Figure 4.9, where the blue bars are 
the histogram and the orange line is the cumulative distribution.  

Figure 4.8: Low loaders by hour of the day – percentage 

 

Figure 4.9: Low loader vehicle speed histogram – cut off at 150 km/h 
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As safety and the dynamic effect a vehicle has on a structure or pavement is influenced by its mass and 
speed, the project investigated the correlation between these two parameters. The recorded GCM was 
plotted against the vehicle speed for low loaders from the class B confidence dataset, as shown in 
Figure 4.10. The highest density of vehicle records tends to exist about the 90 to 100 km/h speed reading, 
regardless of GCM. This indicates that low loaders will generally travel at the speed limit regardless of their 
loads.    

4.3.7 Gross Vehicle Mass  

According to the HVNL, the allowable GCM of low loaders in Queensland is generally limited by the mass 
limit on the structure, road or up to 59.5 t (60 t with a complying steer axle) (HVNL Multi-State Class 1 Load 
Carrying Vehicles Mass Exemption Notice 2016 Amendment Notice 2019 (No. 1)). The project investigated 
the low loaders with a class B confidence to assess compliance, as shown in Figure 4.11.  

The project determined that approximately 90% of the low loader records were below the 60 t limit. Taking 
into consideration the ± 10% GVM error allowance for class B sites and on the basis that the majority of WiM 
sites used in the analyses were class B confidence, the limit increases to 66 t. The project found that 96% of 
vehicles were recorded as below the 66 t limit. While the general finding would be to note that on average 
10% of the vehicles exceeded the 60 t limit, it would be reasonable to assert that even after the likely errors 
were taken into account, at least 4% of the low loaders were likely to have been non-compliant.   

Figure 4.10:  Low loader speed by Gross Vehicle Mass (GVM) 
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Analysis of the GVMs for individual configurations revealed additional information regarding laden and 
unladen loads and which types of vehicles carry the heaviest loads. An example of the GVM for a common 
low loader configuration is presented in Figure 4.12.  

Further information on the GVMs for the most common low loader configurations can be found in 
Appendix G of Eskew et al. (2021). The number of class B confidence records for each configuration is noted 
at the top of the plots. It should be noted that of the most common configurations, only 12222 configurations 
(prime mover, tandem dolly and spread quad trailer) have a large percentage of GVMs over 66 t.  

Bridge engineers are interested in the likelihood of extreme loads as only one grossly overloaded truck is 
required to damage a bridge. While GCM is a readily available screening parameter, derived information 
such as how much the span bends is more important. 

Figure 4.11:  Confidence B low loader GVM statistics 
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4.3.8 Heaviest Axle Mass 

The project aimed to investigate the loads applied by single axles of axle groups on low loaders, using the 
Class B confidence dataset, by distributing the axle group mass evenly over the number of axles in the 
group. The heaviest recorded axle mass for each low loader is presented in Figure 4.13. 

There is a large peak in heaviest axle masses around 5 to 7 t, likely coinciding with the vehicles unladen 
self-weight. It should also be noted that over 96% of the heaviest axle masses for low loaders and load 
platforms fall below 10 t. For the heavier axle masses, additional information on axle ground contact width 
and the number of wheels per axle would enhance the assessments regarding pavement and structural 
deterioration. 

Figure 4.12: Confidence B low loader configuration 1222 GVM  
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4.3.9 Drive Axle Mass 

While the steer axle mass is relatively independent of the cargo mass for articulated vehicles, the drive axle 
mass is impacted by the cargo as the drive axle supports the fifth wheel coupling. The project therefore 
investigated if the drive axle mass for low loaders were correlated with other key parameters. The axle mass 
for each drive axle was calculated by distributing the second axle group mass evenly over the number of 
axles in the group. The drive axle mass distribution is shown in Figure 4.14, which contains the two peaks 
likely relating to the unladen and laden vehicles.   

Figure 4.13: Low loader heaviest axle mass distribution – cut off at 20 t 
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Due to the relationship between the cargo and its drive axle mass, the project analysed the drive axle mass 
of the Class B confidence low loader dataset compared against its heaviest axle mass, as shown in 
Figure 4.15. Based upon the linear relationship and low variation of standard deviation, it was determined 
that the drive axle mass was a good indicator of the heaviest axle mass of the vehicle (see black dotted line 
in Figure 4.15). This relationship does not hold true between the drive axle mass and GVM, as shown by the 
wide standard deviations and non-linear mean line in Figure 4.16. However, further analysis of specific 
configurations may be able to improve the drive axle mass to GVM and heaviest axle mass relationships. 
This conclusion should be re-visited as the coverage of wide vehicles improves with future enhancements to 
data collection and processing techniques.   

Figure 4.14: Low loader drive axle mass histogram – cut off at 20 t 
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The right-hand vertical axis corresponds to the mean (blue line) and standard deviation (dotted orange line) 
of the heaviest axle masses of the vehicles contained in the counts for vehicles with a drive axle mass in the 
range represented by each bar (histogram). 

4.3.10 Discussion 

The project analysed the characteristics of the low loaders and came to the following conclusions: 

 Most of the low loaders were of the configurations 1222, 1212, 12222, 124, 1221 or 2222. 

Figure 4.15: Low loader drive axle mass vs heaviest axle mass – cut off at 20 t 

 

Figure 4.16: Low loader drive axle mass vs gross vehicle mass – cut off at 20 t 
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 There is a slight increase in mean GCM with increasing  ‘A’ distance. There are some low loaders with 
the ‘A’ distance < 6 m. 

 Low loaders tend to travel at the speed limit, regardless of the cargo they are carrying. Site specific 
analysis could be performed to confirm this in areas with heavy vehicle speed restrictions 
(i.e. capacity-reduced bridges).  

 Of the most common configurations, only 12222 configurations have a large percentage of GVMs over 
66 t.  

 Most low loaders have a heaviest axle mass under 10 t. Additional information regarding ground contact 
width and the number of tyres per axle could be used to assess if vehicles with heavier axle masses are 
of concern to TMR’s assets. 

 Drive axle mass shows promise in identifying low loaders with high mass axles. Additional applications to 
GVM may be gained through configuration specific refinement. 

 At present, there is still some concern that the analysed dataset may not contain the heaviest (and 
widest) low loaders that occupy two lanes or do not have all wheels on the WiM or classifier sensors (see 
Section 3.2 for more details). 

4.4 Load Platforms 

Load platforms are combinations including a prime mover and a load platform trailer which consists of at 
least 5 equally spaced axles in a group at least 1.6 m apart. They may also have a low loader dolly, and 
there may be more than one prime mover. These vehicles carry the largest indivisible loads across the 
network and pose the greatest single overload risk to structures. 

WiM and classifier data for the load platforms was filtered from the larger dataset. Using the information from 
all available sites, analyses were performed using the data filters identified in Section 4.2 and summarised in 
this section. 

4.4.1 Configurations 

The configuration indicates the type of platform used by the vehicle. Increased number of axles on a platform 
can be indicative of a capacity to haul larger items, resulting in higher GVMs. Conversely, higher GVMs on a 
platform with a low number of axles can indicate higher axle masses. 

Understanding the configurations on the network can provide valuable information on the heaviest masses 
being carried. The different configurations classified as load platforms by the project, are displayed in 
Figure 4.17 and Figure 4.18. 

The most common load platform configurations include 127, 126, 128 and 125. There are some large 
vehicles on the network, with a significant number of 10 axle platforms (120 and 1220), the largest vehicles 
in the dataset have 12 axles (12B). Further improvements to WiM and classifier data collection will likely 
reveal larger multi-platform combinations known to access the network but were not observed in the dataset. 
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4.4.2 Spatial Occurrences 

A key question posed to the project regarding the load platforms was ‘where are they?’. The project 
investigated the locations where the load platforms were recorded. The map in Figure 4.19 shows the 
locations of the WiM and classifier sites, with the colour of each marker indicating number of low loader 
records identified between 01/01/2019 and 09/02/2020. The sites with the highest density of low loader 
records occur in South East Queensland, near Brisbane. Away from Brisbane, there were sites with over 
50 records near Mackay and north of Rockhampton. The remaining sites had under 50 load platform records 
each. 

Figure 4.17: Load platform configurations  

Figure 4.18: Load platform configurations by percentage  
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4.4.3 ‘A’ Distance 

While ‘A’ distance is not a part of the governing regulation for load platforms, the project decided to 
investigate the relationship between the last prime mover or dolly axle and first load platform axle distance 
as it is a bridge risk consideration. This relationship between applied loads and distance can have an 
influence on the shear and bending moments on structures. ‘A’ distance is plotted in Figure 4.20, where the 
blue bins are the distributions of records (in 0.5 t bins) and the orange line is the cumulative distribution, 
which shows that approximately 15% of the load platforms had a recorded ‘A’ distance under 6 m and are of 
concern re impacts on bridges.  

Figure 4.19: Density of load platform records at WiM and classifier sites within dataset 
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The project also investigated if there was a relationship between the load platform ‘A’ distance and the GVM 
using the class B confidence dataset, shown in Figure 4.21. There does not seem to be a governing 
correlation between the ‘A’ distance and the GVM, with the GVM mean slightly decreasing with larger ‘A’ 
distances. These conclusions are likely heavily influenced by the small sample size, as there were only 975 
load platform records in the class B confidence dataset.  

Figure 4.20: Load platform ‘A’ distance distribution 

 

Figure 4.21: Confidence B load platform ‘A’ distance by GVM 
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4.4.4 Temporal Traffic 

The load platform dataset was analysed for any temporal patterns, by breaking the records down into the 
day of week (Figure 4.22) and hour of day (Figure 4.23).  

While low loaders commonly travelled during the weekday and during work hours (6 am to 6 pm), load 
platforms were much more likely to travel during the weekend, and in the hours of the day between 12 am to 
6 am. Due to their heavy loads and large platforms, load platform vehicles are much more likely to be 
traveling under permit restrictions, which may be the reason for the variation in temporal patterns.  

 

Figure 4.22: Load platforms by day of the week – percentages 

 

Figure 4.23: Load platforms by hour of the day – percentages 
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4.4.5 Vehicle Speed  

Analysis of the travel speed of the load platforms revealed that approximately 77% recorded speeds 
between 70 and 110 km/h, with over 99% traveling below 110 km/h. As the speed limits of these roads were 
typically 80 or 100 km/h, it can be inferred that most load platforms will travel at the speed dictated by traffic. 
The vehicles noted as traveling slower were likely due to the larger loads they were carrying. A histogram 
(blue bins) and the cumulative distribution (orange line) of the recorded load platform vehicle speeds are 
presented in Figure 4.24. 

As the dynamic effect a vehicle has on a structure or pavement is influenced by its mass and speed, the 
project investigated the correlation between these two parameters. The recorded GVM was plotted against 
the vehicle speed for load platforms from the class B confidence dataset, as shown in Figure 4.25. The 
highest density of vehicle records tended to exist around the 80 km/h speed reading, regardless of GVM. 
This indicates that the load platforms will generally travel at the speed limit regardless of the loads they are 
carrying.    

Figure 4.24:  Load platform vehicle speed histogram – cut off at 150 km/h 

 



 

Final  ǀ  NACOE S26: Virtual WiM – Enriching WiM and Enhancing Decisions (2018–21) 50
TC-710-4-4-8a 

4.4.6 Gross Vehicle Mass  

The GVMs of the load platforms were assessed as a percentage of the entire dataset in 5 t bins using the 
Class B confidence dataset, shown in Figure 4.26 with the orange line representing the cumulative 
distribution. There is a predominant peak in the data, corresponding to the unladen GVM of the load 
platforms. The unladen mass has a large spread due to the varying unladen masses of the differing 
configurations. A local rule of thumb for the unladen mass of load platform trailers is 4 t per platform axle 
(plus an additional 4 t if it has a gooseneck connection) and an additional 3 or 5 t if the combination includes 
a low loader dolly. The laden vehicle masses consist of the large right-hand tail, likely due to the varying 
cargo masses carried by the differing configurations.  

Figure 4.25: Load platform speed by gross vehicle mass (GVM) 

 



 

Final  ǀ  NACOE S26: Virtual WiM – Enriching WiM and Enhancing Decisions (2018–21) 51
TC-710-4-4-8a 

The project also investigated the GVMs for some of the more common load platform configurations from the 
class B confidence dataset. An example is shown in Figure 4.27 with the cumulative distribution represented 
by the orange line. The number of class B confidence records for each configuration is noted at the top of the 
plots. The unladen peaks can be noted to shift based upon the varying configurations. The specific 
configurations noted as hauling the heaviest masses can also be identified through analysis of the individual 
configurations. However, it should be noted that these conclusions are likely heavily influenced by small 
sample sizes, as there were only 975 total load platform records in the class B confidence dataset.  

Figure 4.26: Confidence B load platform GVM  
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4.4.7 Heaviest Axle Mass 

The project investigated the loads applied by single axles of axle groups on the load platforms, using the 
Class B confidence dataset, by distributing the axle group mass evenly over the number of axles in the 
group. The heaviest recorded axle mass for each load platform is presented in Figure 4.28, with the blue 
bins representing the distribution of heaviest axle masses and the orange line the cumulative distribution. 
The load platforms tended to have larger heaviest axle masses than low loaders, with under 86% of load 
platforms having a heaviest axle mass under 10 t. For the heavier axle masses, gathering additional 
information on axle ground contact width could allow for assessments regarding pavement and structural 
deterioration. 

Figure 4.27: Confidence B load platform configuration 127 GVM  
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4.4.8 Drive Axle Mass  

While the steer axle mass is relatively independent of the cargo mass in articulated vehicles, the drive axle 
mass is impacted by the cargo due to its proximity to the fifth wheel coupling. The project therefore 
investigated if the drive axle mass for load platforms were correlated with other key parameters. The axle 
mass for each drive axle was calculated by distributing the second axle group mass evenly over the number 
of axles in the group. The drive axle mass is shown in Figure 4.29. Similarities in the distribution of the drive 
axle mass and GVM can be seen when comparing the figures, shown in Figure 4.29 and Figure 4.14 
respectively.  

Figure 4.28: Load platform heaviest axle mass distribution – cut off at 20 t 

 



 

Final  ǀ  NACOE S26: Virtual WiM – Enriching WiM and Enhancing Decisions (2018–21) 54
TC-710-4-4-8a 

Due to the relationship between the cargo and its drive axle mass, the project analysed the drive axle mass 
of the Class B confidence load platform dataset compared against its heaviest axle mass, as shown in 
Figure 4.30. Based upon the linear relationship and low variation of standard deviation, it was determined 
that the drive axle mass was a good indicator of the heaviest axle mass of the vehicle. This relationship does 
not hold true between the drive axle mass and GVM, as shown by the wide standard deviations and 
non-linear mean line in Figure 4.31. Further analysis of specific configurations may be able to improve the 
understanding of relationships between drive axle mass, GVM and heaviest axle mass. 

Figure 4.29: Load platform drive axle mass histogram – cut off 20 t 
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Figure 4.30: Load platform drive axle mass vs heaviest axle mass – cut off at 20 t 

 

Figure 4.31: Load platform drive axle mass vs gross vehicle mass – cut off at 20 t 
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4.4.9 Discussion 

The project analysed the characteristics of the load platforms and came to the following conclusions: 

 The most common load platform configurations include 127, 126, 128 and 125 with significant numbers 
of 10 axle platforms (120 and 1220). The largest vehicles observed in the dataset have 12 axles (12B). 

 The largest configurations may not be included in the dataset as WiM and classifier systems are not 
established for these vehicles and they may not cross all the sensors. 

 As the ‘A’ distance is not a regulatory requirement for the load platforms, it was not correlated with the 
vehicle masses. About 15% have 'A' distances less than 6 m which is of interest from a bridge risk 
management perspective. 

 The load platforms travelled during non-peak travel times, which is likely due to regulations and permit 
restrictions. This is in contrast to low loaders that tend to travel during the day on weekdays. 

 Load platforms tend to travel at the speed limit, regardless of the cargo they are carrying. Site specific 
analysis could be performed to confirm this in areas with heavy vehicle speed restrictions (i.e. capacity 
reduced bridges). 

 While not a large part of the network traffic, load platforms had high GVMs and axle masses.  
 Around 14% of load platforms had a heaviest axle mass over 10 t. Additional information regarding 

ground contact width and number of tyres per axle are necessary to assess if vehicles with heavier axle 
masses are compliant or of concern to TMR’s assets. 

 Drive axle mass shows promise in identifying load platforms with high mass axles. Additional applications 
to GVM may be gained through configuration specific refinement.  

4.5 Cranes 

Heavy mobile cranes, mostly referred to as all terrain cranes, were also investigated. For the purposes of this 
report heavy mobile cranes are cranes with 4 or more axles.  

Due to their high axle loads, these cranes can induce large, concentrated forces on network assets and thus 
their access is managed. Additionally, heavy mobile cranes have potential for live calibration or calibration 
validation of WiM systems. When accessing the road network, cranes nominally run at the same mass and 
axle loads and their axle spacing signature is constant. In addition, each crane model has a unique ‘axle 
spacing signature’, potentially enabling individual models of cranes to be identified from the ‘axle spacing 
signatures’ recorded by vWiM assets. 

As an initial analysis, heavy mobile crane data was sorted from the full WiM dataset at 4 sites, Nudgee, 
Hemmant, Belmont northbound and Belmont southbound. Analyses were performed on the crane records 
from these heavily trafficked sites using the data filters identified in Section 4.2 and summarised in this 
section. 

4.5.1 Configurations 

The IAP crane register consists of 144 crane models. When developing rules to identify these cranes in the 
dataset, the project determined that some of these cranes had similar configurations. Accounting for models 
with similar configurations the project identified 83 distinct crane configurations. Based upon the filtering 
performed using the distinct crane configurations 2,954 cranes were identified in the 13-month dataset 
(2,292 crane records during class B confidence months). The number of cranes identified at each WiM site 
shown in Figure 4.32. The number of cranes identified by configuration are shown in Figure 4.33 and 
Figure 4.34. This data indicates that 80% of the detected cranes were 4 and 5 axle cranes and that these 
would cross these sites every day or three and thus provide a useful validation of the WiM calibration if they 
can be reliably detected. Note cranes accessing other sites could be less frequent.  

It is worth noting that the same crane may exhibit different configurations. For example, some crane models 
can travel with or without a trailing boom dolly, as shown in Figure 4.35, which would add another axle group 
to its configuration. In addition to changing the crane’s configuration, the addition of a trailing boom dolly 
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significantly alters the distribution of mass to the axles, as demonstrated in Table 4.2. Other crane models 
were noted as having retractable axles, such as shown in Figure 4.35, which gives them the capacity to 
change their configuration, spacings and loading. 

 

 

Figure 4.32: Crane records by WiM site 

Figure 4.33: Crane records by configuration  
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Figure 4.34: Crane records by configuration – percentage 

 



 

Final  ǀ  NACOE S26: Virtual WiM – Enriching WiM and Enhancing Decisions (2018–21) 59
TC-710-4-4-8a 

 

Figure 4.35: Combinations of cranes with boom dolly, boom over front, and retractable axles  

 

 

 

 

 

Source: Manitowoc (2020). 
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Table 4.2: Example of the change in axle mass when travelling with or without boom dolly (for the base crane 
with no counterweight) 

4.5.2 Dimensions 

While it is generally assumed that all cranes with similar numbers of axles have a consistent axle layout, a 
review of manufacturer specifications showed that this is not necessarily the case. Varying configurations 
exist between different crane types and manufacturers, as shown by the varying configurations in 
Figure 4.36, which displays the axle locations for each crane model in the project as per the manufacturer 
specifications. Some cranes operate with or without boom dollies, as indicated by trailing axles on some 
cranes (e.g. GROVE GMK7550). These cranes are still classified in Figure 4.36 as per the number of axles 
excluding the additional axles supporting the boom. 

To further investigate the consistency of crane axle spacings, the cumulative distributions for each axle 
spacing, per the number of axles on the crane, were plotted. An example for 4 axle cranes is shown in 
Figure 4.37.  

In the cumulative distributions, the axle spacing jumping from 0% to 100% indicates all of the vehicles have 
similar axle spacings, whereas multiple jumps between 0% and 100% indicates variability in the crane axle 
spacing data for cranes with the same number of axles.  

The comparable axle spacings in the 4 and 5 axle cranes signify that the different crane models use a similar 
axle layout. They are also the most common (Figure 4.33). The 6–8 axle crane datasets are too small to 
draw conclusions from, though the spacing between axles 5 and 6 of the 8 axle cranes do exhibit significant 
variation. Nine axle cranes showed two distinct configurations between axles 8 and 9, and a variety of 
spacings between axles 6 and 7 which could be due to varying dolly configurations. 

Unit type Travel mode 
Front axle group 

mass (t) 

Rear-axle 
group mass 

(t) 
Boom dolly axle 
group mass (t) 

GVM  

(t) 

Basic machine with no 
counterweights 

Boom over front 20.631 18.358 - 38.989 

Trailing boom dolly 17.085 14.544 10.202 41.831 

Machine with total 
counterweights of 11.793 t 

Boom over front 23.259 27.567 - 50.817 

Trailing boom dolly 18.708 17.937 17.014 53.659 

Source: Manitowoc (2015). 
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Figure 4.36: Crane axle locations per manufacture specifications  
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4.5.3 Gross Vehicle Mass 

The project investigated the GVM of the cranes.  

The GVM statistics for each crane configuration, only using records from the months classified as confident 
according to the class B confidence assessment from Section 3.3.2, are shown in Figure 4.38 as a box and 
whisker plot. The orange line identifies the mean, the box represents the 25% and 75% quartiles, and the 
whiskers are the minimum and maximum GVM readings. The mean GVM stays relatively consistent for the 4 
to 6 axle configurations, though there is a larger range of values noted in the 22 and 5 axle configurations 
(the higher masses of the 5 axles in relation to the 6 axles could be from sample size or separate 
counterweight transport). Higher average masses are generally noted in the 7 to 9 axle configurations.  

Comparison of the WiM GVM with nominal GVM from manufacturer’s data indicates the WiM system 
provides a reasonable estimate for the GVM of cranes around half the time but there are outliers (whiskers) 
that would benefit from investigation and continual improvement. This is discussed further in Section 3.3. 

Positive identification of the make and model of the crane would make these cranes a useful resource in the 
improvement of WiM data quality. Merging higher precision axle spacing signatures from WiM and classifiers 
and imagery with manufacturer data would provide the necessary information to help improve the quality and 
reliability of vWiM data. 

The distribution of crane GVMs are presented as the blue bins in Figure 4.39, with the orange line 
representing cumulative distribution of the crane GVMs. 

Figure 4.37: 4 axle crane axle spacings  
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Figure 4.38: Gross vehicle mass distribution of cranes 

 

Notes: 

 Some crane configurations may include boom dollies.  
 4 axle cranes typically have a GVM of 40 t (10 t per axle) or 48 t (12 t per axle) per manufacturer specifications. 
 5 axle cranes typically have a GVM of 50 t (10 t per axle) or 60 t (12 t per axle) per manufacturer specifications. 
 6 + axle cranes weigh up to 12 t per axle but often can reduce their axle weight by having their counterweight, boom or other components 

transported separately. 
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4.5.4 Axle Mass 

Due to their high GVMs and low number of axles, cranes can exhibit large, concentrated axle masses. To 
assess the individual axle masses of cranes the axle group masses were distributed evenly to all axles in the 
group (i.e. if a group of 2 axles had a group mass of 30 t, each axle was assessed as having an individual 
mass of 15 t). The axle location (distance from the front axle of the crane) and the axle masses for each 
recorded crane, are shown in Figure 4.4010. In general, the larger axle masses are associated with the first 
5 crane axles, likely from the cranes with 4 and 5 total axles.  

 

10 Using records from months classified as confident according to the class B confidence assessment from Section 3.3.2. 

Figure 4.39: Crane GVM distribution 
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While cranes with over 6 axles tended to have higher GVMs, their masses were also spread over a greater 
number of axles reducing the mass per axle, as shown by the reduced distributed axle masses for 
configurations with 6 or more axles (287 records total) in Figure 4.41. Most of the higher axle loads evident in 
Figure 4.40 but not in Figure 4.41 are therefore related to 4 and 5 axle cranes or similar. Understanding the 
variability in the axle mass for 4 and 5 axle cranes would be useful given the peak estimated axle loads are 
possibly twice the nominal mass and thus significant for the management of both road and bridge assets, 
should the loads be real. It is noted that some of these shorter cranes can generate pitch modes that would 
accentuate the axle loads at the beginning and end of short cranes.   

Figure 4.40: Axle masses – all cranes 

Figure 4.41: Axle masses – configuration with 6 or more axles 
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4.5.5 Heaviest Axle Mass 

Assessments of the distributed axle mass led the project to investigate the heaviest distributed axle mass 
per crane, to evaluate the highest concentrated axle loads per record. The distribution of heaviest axle mass 
per crane, only using records from months classified as confident according to the class B confidence 
assessment from Section 3.3.2, are presented in Figure 4.42. Over 55% of the crane records were noted as 
exhibiting heaviest axle masses over 11 t, and approximately 25% of the cranes had a heaviest axle mass 
over 12.5 t, with very few over 15 t. The lower axle masses (less than approximately 8 t) suggest some 
vehicles with similar ‘axle spacing signatures’ are included within the crane dataset. Investigating the low and 
high outliers provides an opportunity for continual improvement. 

4.5.6 Vehicle Speed 

Vehicle speed can impact the force applied by a vehicle to a pavement or structure while traveling on the 
roadway. To better understand the speed of the recorded cranes the distribution of their speeds is plotted in 
Figure 4.43. Most of the cranes travel between 80 to 90 km/h at WiM sites in the dataset. The speed limit at 
each recorded WiM site is 100 km/h, apart from Hemmant (80 km/h). The distribution of vehicle speed in 
relation to the site speed limit is shown in Figure 4.44. Most cranes are noted as tending to travel at 
approximately 80% to 90% of the speed limit.  

 

Figure 4.42: Crane heaviest axle mass distribution  
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As the dynamic effect a vehicle has on a structure or pavement is influenced by its mass and speed, the 
project investigated the correlation between these two parameters. The recorded GVM was plotted against 
the vehicle speed for cranes, as shown in Figure 4.45. Cranes are often limited to 80 km/h according to 

Figure 4.43: Crane vehicle speed  

 

Figure 4.44: Crane vehicle speed in relation to site speed limit distribution 
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manufacturers’ specifications, so the high density of vehicle records at this speed indicates they travel near 
their maximum speed. A cluster of significantly lighter vehicles (less than approximately 30 t) can be seen 
travelling closer to the speed limit, which is 100 km/h at most WiM sites, are likely to be rigid trucks with 
unusual axle spacing geometry incorrectly identified as cranes. 

Figure 4.45:  Crane speed by Gross Vehicle Mass (GVM) 

Note: Typical image from TMR bridge load model report 

4.5.7 Discussion 

Cranes are noteworthy as their high concentrated axle masses can be of concern for pavements and 
structures. Due to these factors the project investigated their presence at 4 WiM sites. The project analysed 
the crane dataset in regard to their configuration, mass and speed. Some conclusions from the analysis 
include: 

 Over 60% of cranes have a GVM between 40 and 60 t. 
 Cranes with 4 to 6 axles tend to have higher concentrated axle masses than cranes with more axles, 

despite cranes with more axles having heavier GVMs. 
 Over 55% of cranes have a heaviest axle mass of over 11 t.  
 Cranes tend to travel below the speed limit (around 80 km/h consistent with maximum speeds noted by 

manufacturers).  
 Cranes can be largely detected in the data stream via their axle signatures, although there is some 

dilution from other vehicles with similar axle signatures. 
 The crane data, particularly the most common 4 and 5 axle cranes, provides an opportunity for  

– continual improvement of WiM and classifier data  
– understanding the appropriate bridge assessment criteria for cranes.  
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4.6 Summary 

Recent improvements to the WiM and classifier processing algorithms to better detect heavy vehicles 
occupying two lanes made a dataset available for low loaders, load platforms and heavy mobile cranes 
throughout Queensland for the first time.  

The project analysed this new data both to better understand the vehicles of interest to Queensland and to 
provide insight into the capabilities of the data. Analyses were performed to better understand: 

 load platforms throughout Queensland 

 low loaders throughout Queensland 

 cranes at 4 south-east Queensland locations 

 the opportunity to utilise crane data for continual improvement of WiM and classifier data 

 the loads applied to bridges by low loaders, load platforms and cranes. 
The insights generated, together with the improved understanding of data quality, provide the basis for more 
informed, credible decisions regarding access and asset management across the network. 

The results of these analyses are presented in the following section. 
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5. Applications of Virtual WiM 

This section discusses the application of the learnings to Virtual WiM which are summarised into three areas: 

1. data quality and integration 
2. WiM to classifier extrapolation 
3. prototype tracking tool for vehicles of interest. 

Additional data sources were investigated as part of this project and are outlined with the consideration of 
integration to expand the value and functionality of WiM or to improve the quality of the WiM data. 

5.1 Data Integration and Quality 

A series of case studies in the following sub-sections explore the integration of (or possible integration of) 
WiM data with other datasets enriching the understanding of heavy vehicle traffic and improving the quality 
of, and confidence inspired by the data. The case studies and related findings are summarised in Table 5.1. 

Table 5.1: Case studies – exploring data integration and data quality  

Case study Section Sources of data Key outcomes and opportunities 

Integrating bridge 
monitoring data 

Section 5.1.1 Bridge sensors (Gateway Arterial 
Flyover) 

CCTV camera 

ANPR-capable camera 

Classifier data (0.8 km from bridge) 

WiM data (12 km from bridge) 

Manufacturer data (payloads) 

Vehicle registered mass data 

Integrating the bridge monitoring system with WiM data 
revealed that the vehicles posing the greatest risk to the 
bridge (load platforms) were not visible in the WiM and 
classifier data due to their unusual configurations. 

The combination of data provides powerful opportunities 
to independently verify and validate outlier events and to 
inform bridge risk and the continual improvement of both 
data collection and the asset management decisions. 

Integrating crane WiM 
and ATO data 

Section 5.1.2 WiM data for cranes (based on axle 
footprints identified in Section 4.5.2) 

ATO permitted mass data for cranes 

IAP telematics (GPS location data) 

Confirmed potential to validate and calibrate (live) WiM 
and classifier systems using ATO data. 

Integrating WiM and ATO data with ANPR or video 
detection would benefit this use case especially on busy 
multi-lane highways where matching is more challenging. 

Integrating WiM and 
OBM data 

Section 5.1.3 WiM data  

OBM data 

IAP telematics (GPS location data) 

Similar to crane ATO data, there is an opportunity to use 
integrated OBM data for the live calibration of WiM and 
classifier data. 

Additionally, it may be possible to use WiM sites to 
calibrate OBM sensors or identify vehicles where 
on-board sensors have drifted out of calibration. 

Only a small proportion of the heavy vehicle fleet is 
instrumented with OBM sensors and there is 
room-for-improvement in the quality of this data. 

Integrating WiM and 
ANPR data 

Section 5.1.4 WiM data 

ANPR data 

Matching vehicle permit data and registration data with 
WiM data to improve understanding of rare vehicle 
combinations. 

Further enhance live calibration of WiM sites in 
combination with ATO, OBM and/or permit data. 

Currently the ANPR and WiM data is not automatically 
integrated. 

Rear number plates (of load platform trailers for example) 
may be required for certain applications. 

Assessing data quality 
using steer axle mass 

Section 5.1.5 WiM data (only) The steer axle mass of '123' configuration semi-trailers 
provides a reliable way of assessing quality and there is 
potential to further enhance this capability. 
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5.1.1 Integrating Bridge Monitoring Data 

It was identified during the monitoring of the Gateway Arterial Flyover (GAF) during an upgrade project 
strengthening deficient components of the bridge structure that there is value in combining datasets. To 
better understand the response of the GAF to heavy vehicle traffic and inform the access, risk management 
and due diligence for the structure, the monitoring team combined data from: 

1. nearby WiM and classifier sites  
2. two overhead CCTV cameras (one with ANPR capability) 
3. publicly available manufacturer data and registered tare mass data (ATO data) 
4. strain gauges on the bridge. 

The project's stakeholder engagement (Heldt et al. 2019) highlighted the increased value achieved by 
integrating multiple data sources, including: data from WiM, classifiers, bridge monitoring data, cameras, 
ATO, permits, IAP and OBM data and other data sources such as bridge maintenance expenditure and 
bridge assessment data to make better evidence-based decisions for bridges, pavements, and planning. 

Integration with ATO data, IAP and OBM data, and ANPR were investigated and reported in this section. 
Each data source provided valuable information.  

At GAF, the bridge monitoring system was on the same route as nearby WiM and classifier sites, which 
provided axle spacings and mass records for the vehicles. Strain gauges measured the response of the 
bridge to traffic loads and the overhead camera provided video and still images of the vehicles causing the 
largest strains in the structure. Manufacturer data provided estimates of the tare mass of vehicles and in 
some cases, the loads they were carrying. When the three datasets were combined it was possible to: 

 calibrate the sensors using multiple crossings of vehicles identified within the traffic stream (i.e. without a 
specific calibration vehicle or vehicles) 

 estimate the mass and dynamic component of load for individual vehicles travelling across the GAF 

 understand the largest observed events in detail 

 provide evidence to encourage compliance with the access restrictions that were in place on the bridge 
during strengthening works.  

The combination of the three data sources also led to valuable discoveries including that: 

 The largest strains on the bridge were caused by load platforms, followed by low loaders, heavy mobile 
cranes and freight vehicles (Figure 5.1). 

 Low loaders and load platforms were not being detected by the WiM and classifier stations. 

 The low loaders and load platforms were occupying two lanes but the fragments of data from each lane 
could be merged to provide the total for the two lanes and greater visibility in the dataset to these 
vehicles. 

 It was likely some wide low loaders and platforms were running with wheels in the shoulders (therefore 
outside of the WiM sensors resulting in lower measured mass) and were thus underestimating the mass. 

 With the combined data it was possible to provide granular feedback regarding the effectiveness of 
access management decisions and risk controls and to inform the ongoing management of the structure. 
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5.1.2 Integrating Crane WiM and ATO Data 

The objective was to explore the possibility of using crane ATO data matched to WiM data to validate and 
improve the quality of WiM data, as identified by Eskew et al. (2021).  

Eskew et al. (2021) analysed the GVM of crane records identified using axle spacing footprints in the project 
dataset (see Figure 5.2). 

Given the relatively fixed mass of cranes (subject primarily to different configurations and boom, dolly and 
counterweight arrangements), these vehicles present an opportunity to inform the live calibration of WiM 
systems. However, larger than expected spread in the range of recorded GVM was found for the different 
crane configurations, prompting further investigation. 

The ATO mass records for each of the crane configurations were compared with the WiM records using IAP 
data to match known ATO cranes to WiM results at the approximate time the cranes (fitted with IAP) passed 
through a WiM station. 

Figure 5.1: Load platforms pose the greatest risk to the Gateway Arterial Flyover followed by low loaders, 
heavy mobile cranes and freight vehicles 

 



 

Final  ǀ  NACOE S26: Virtual WiM – Enriching WiM and Enhancing Decisions (2018–21) 73
TC-710-4-4-8a 

Background 

To operate on the Queensland road network, Class 1 cranes and special purpose vehicles are required to 
obtain Authority To Operate (ATO) certificates. These certificates are issued and valid only for a specific 
configuration and operating weight. The vehicle dimensions and individual axle masses are measured and 
recorded on the certificate at the time of issue. 

In the ATO database, the following information is recorded for each vehicle: 

 vehicle ID (de-identified for this project) 

 make (and model in some cases) 

 vehicle dimensions (length, width, height, axle spacing and ground contact width) 

 vehicle mass details (individual axle mass, tare mass and gross vehicle mass or gross combination 
mass) 

 the number of tyres per axle. 

Most cranes are also required to enrol in the Intelligent Access Program (IAP) which provides live telematics 
data every 30 seconds. IAP data includes the following information: 

 vehicle ID (de-identified for this project) 

 date and time stamp 

 latitude and longitude 

 speed 

 make (and model in some cases) 

 vehicle type. 

Figure 5.2: Gross vehicle mass distribution of cranes identified using axle spacing footprint in the WiM data 

 

Notes: 

 Some crane configurations may include boom dollies  
 4 axle cranes typically have a GVM of 40 t (10 t per axle) or 48 t (12 t per axle) per manufacturer specifications. 
 5 axle cranes typically have a GVM of 50 t (10 t per axle) or 60 t (12 t per axle) per manufacturer specifications. 
 6 + axle cranes weigh up to 12 t per axle but often can reduce their axle weight by having their counterweight, boom or other components 

transported separately. 
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Method 

To facilitate a comparison between ATO data and WiM measurements, WiM, ATO and IAP data was 
extracted for cranes (or suspected cranes in the WiM data) passing the Nudgee WiM site between 1 May 
and 30 June 2020. 

IAP and ATO data was combined into a single dataset using the de-identified vehicle IDs (which although 
de-identified, were consistent between the two datasets).  

The combined IAP+ATO data was then related with the WiM data where possible using the IAP telematics 
data. Successful matches were those where both WiM records and IAP+ATO records existed with 'matching' 
(within a tolerance) axle footprints and crossing times. Crossing times were recorded directly at Nudgee WiM 
station and estimated from IAP records (using a process of dead reckoning).  

Vehicle mass was used as a tiebreaker when multiple 'matching' WiM records were identified for a single 
crossing in the IAP records. A summary of the method used to find matching records is shown in Figure 5.3.  

Results and discussion 

The above method did not identify suitable matches for all vehicles. This may be due to several reasons, 
including the frequency of the IAP records, not able to determine the lane the vehicle is travelling as well as 
the exact time which the vehicle goes over the WiM site. It is noted that filtering based on mass match may 
introduce bias as it assumes that the WiM data is accurate. A similar approach to matching was used for On-
board Mass Measurement (OBM) data from the same period. 

Figure 5.4 shows the comparison of the ATO permitted GVM versus the WiM measured GVM per lane. The 
most important finding was that all the WiM results were below the ATO permitted GVM. This finding is at 

Figure 5.3 Method used to match ATO and WiM data (using IAP telematics data reported at 30-second 
intervals 

 

Note: Where two WiM records existed around the same time as the estimated crossing time with matching configuration, a comparison between the ATO mass and 
WiM mass was used to break ties (with the 'match' being taken as the WiM record with mass closest to the mass in the ATO data). 
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odds with the results of Eskew et al. (2021) presented earlier in Figure 5.2, which suggests both under and 
over-estimates. 

Continuing with the comparison of IAP/ATO and WiM comparison, Figure 5.5 shows the comparison of the 
ATO permitted tare mass versus the WiM measured GVM per lane. A review of the ATO data for cranes 
identified that the tare mass can be similar to the GVM, but it can also be vastly different, ranging from no 
change to 22 t. 

Figure 5.4: ATO vs WiM – GVM 
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Figure 5.5: ATO vs WiM – Tare Mass 

Figure 5.6 shows (for the same vehicles) a comparison between the ATO permitted group mass and the WiM 
measured individual group mass coloured by lane. 

Figure 5.7 shows the same comparison of the ATO permitted group mass versus the WiM measured group 
mass but coloured by axle group (numbered in order from the front axle group). 

 

Figure 5.6: ATO vs WiM – Group Mass per Lane 
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Figure 5.8 shows the same comparison of the ATO permitted group mass versus the WiM measured group 
mass coloured by the vehicle ID. Presenting the data in this way shows clusters of repeated crossings for 
each axle group of each vehicle. The clusters reveal the variability of the group masses in WiM, while the 
ATO permitted mass is static (constant, and does not account for the variability associated with fuel tank 
level for example). 

As noted earlier, the above figures show that the data from ATO is generally higher than the measured mass 
from WiM.  

It is noted that Eskew et al. (2021) identified that during the time-period analysed (May to July), the Nudgee 
WiM values were lower than other months in 2019 due to seasonality, which will influence the results 
(Figure 5.9. The mean steer axle mass during this period was 4.6 t to 4.8 t, which is around 20% less than a 
nominal 6 t steel axle and 15% less than the average steer axle mass of semi-trailers of 5.5 t from the project 
WiM data (Table 3.5 and Table 4.1). This suggests the WiM data at this time was underestimating mass by a 
similar amount as compared to the ATO data in Figure 5.4 to Figure 5.8. 

Figure 5.7: ATO vs WiM – Group mass per group 

 

Figure 5.8: ATO vs WiM – Group mass per vehicle 
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Manual matching was undertaken to confirm why there was a large difference between the permitted mass 
from ATO and the recorded mass from WiM for some vehicles. It was found through manual matching of the 
data from the two datasets, using the configuration, mass and time was possible. However, it was noted that 
there is not a perfect match. For a larger crane with a dolly, it was noted that the crane appeared to be over 
two records in the same lane, with the mass and axle group displayed such that it was distributed over 
multiple axle groups (VE8E40B4_20200617_055405_999901). This may be due to the size of the wheels 
being larger than the standard truck tyre, such that the sensor thinks there are multiple axles.11  

Another record was found with what appears to be a crane over multiple lanes, based on the weight and 
timing, but the configuration was displayed slightly differently (V852BE29_20200605_021928_999901).12  

Another finding was that several cranes were found to have recorded at a much lower weight than the 
permissible GVM, in the order of 15 tonnes difference for a 48-tonne crane, which exceeds the 
10% threshold. A review of the vehicle type showed that this vehicle can change its weight dependent on the 
boom/jib which is on the vehicle (Figure 5.10 and Figure 5.11. This highlights that the mass of cranes is not 
as static as originally thought.  

While the manual matching improved the understanding of why the ATO and WiM values do not always 
match up, it also identified time periods when cranes passed the WiM site based on the IAP but no WiM 
records identifiable as the crane were observable (VA23859C_20200615_121216_999901). This hypothesis 
should be confirmed via video footage.  

 

11 This may be due to a vehicle closely following, this could be confirmed with ANPR. The weight discrepancy may be due to the 
vehicle being on the edge of the detector, example provided in Figure 5.14. 

12 This may be due to a vehicle in the adjacent lane, this could be confirmed with ANPR. The weight discrepancy may be due to the 
vehicle being on the edge of the detector, example provided in Figure 5.14. 

Figure 5.9: Nudgee WiM site monthly 123 steer axle statistics 
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These findings highlight why the mass from the WiM may differ from the ATO such that there is in excess of 
the 10% threshold and accentuates that the ATO will only provide the maximum mass of the vehicle, which 
limits its use. It is noted that for some of the vehicles it could not be explained as to why their mass was 
lower than expected (VCC83EFA_20200523_102228_999902).13  

 

 

13 The weight discrepancy may be due to the vehicle being on the edge of the detector, an example is provided in Figure 5.14. 

Figure 5.10: LIEBHERR LTM 1070-4.2 – driving configurations 

 

Source: Liebherr (n.d.). 
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Figure 5.11: LIEBHERR LTM 1070-4.2 – boom/jib combinations 

Another difference identified when comparing the data is the configuration, for example the configuration of a 
crane in the ATO data was recorded differently in the WiM site as a dolly had been attached. This highlights 
that in addition to the errors noted based on mass, filtering by configuration can also provide error, refer to 
Figure 5.12 for a crane and Figure 5.13 for a crane with dolly. 

A further look at the configurations of the suggested fragments of cranes highlight that they are more likely to 
be part of a tandem or tri-axle group and less likely to be part of a crane. Some of the vehicle types which 
are more common than cranes but have configurations similar to those noted as being fragments are shown 

 

Source: Liebherr (n.d.). 

Figure 5.12: LIEBHERR 1220-5.2 five axle Figure 5.13: LIEBHERR 1220-5.2 five axle with dolly 

Source: https://www.liebherr.com/en/ind/latest-news/news-press-
releases/detail/liebherr-presents-the-ltm-1220-5.2-five-axle-
mobile-crane-at-bc-india-2014.html. 

Source: http://redskymedia.com.au/design1/listings/used-cranes/all-
terrain-cranes/2007-liebherr-ltm-1220-5-2-all-terrain-crane/. 
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in Table 5.2. The mass discrepancy may be due to the detectors not picking up the full mass of the vehicle 
due to the vehicle driving over multiple lanes or in the shoulder, as shown in Figure 5.14. ANPR should be 
used to confirm whether these are fragments of crane data or are the more common vehicles. 

Table 5.2: Common vehicle configurations 

Configuration Common vehicle 

o   oo    oo    ooo (1223) Prime mover towing 5-axle ‘23’ dog trailer 

o   oo    o  oo (1212) Prime mover towing 5-axle ‘12’ dog trailer 

o   oo      ooo (123) Semi-trailer 

oo    oo (22) Rigid twin-steer truck (gravel truck or rubbish truck) 

Note: Configuration is using typical axle spacings 1.2 m to 1.4 m between axles in the ‘2’ (tandem) and ‘3’ (tri-axle) axle groups. 

 

In summary, the ATO data for cranes provides an opportunity for live calibration of WiM systems provided 
care is taken with the selection of the ATO vehicles and that they are identified reliably through accurate axle 
spacing detection and preferably confirmed with camera technologies. 

5.1.3 Integrating WiM and OBM (On-Board Mass) Data 

The objective was to investigate the relationship between OBM data and WiM data and explore opportunities 
to calibrate WiM data using OBM data. 

Figure 5.14: Example of vehicle driving on shoulder 

 

Source:  Based on TMR (2020c) SD 1906. 
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Discussion 

On-board mass systems, which are type approved by Transport Certification Australia (TCA), monitor the 
mass of the axle groups on the vehicle, linking it back to IAP. The OBM is in addition to IAP, where vehicles 
enrolled as part of the IAP program elect to have OBM installed, and in some cases are required. 

As part of the analysis, data in May and June 2020 from OBM and WiM located at Nudgee, with the IAP data 
filtered by the proximity to WiM was used. The IAP data was then flagged based on the best match for time 
and weight relative to the WiM station. 

As the IAP records the location every 30 seconds the vehicle required dead reckoning to determine the 
approximate time it passed the Nudgee WiM site, using the direction of travel, location relative to WiM site, 
distance to WiM site and speed. The matching process then compared the WiM and IAP records within the 
time period, using a time range of 30 seconds. The filtered records were then compared based on the 
configuration of the vehicle and the mass of the vehicle. 

It is noted that the above method did not manage to find a suitable match for all the vehicles. This may be 
due to several reasons, including the frequency of the IAP records, lack of ability to confidently determine the 
lane the vehicle was travelling in as well as the exact time which the vehicle went over the WiM site. It is 
noted that filtering based on mass match may bias the graphs below as this assumes that the WiM provides 
an accurate representation of the mass. This analysis is trying to show the correlation. 

It is noted that lane 6 was not utilised for the analysis due to providing poor quality WiM outputs, with the 
mean of the steer axle mass being half of the expected value as indicated in Table 5.3. 

Table 5.3: Mean steer axle mass recorded in each lane at Nudgee WiM site between May and July 2020 

Nudgee May – July 2020 

 Steer axle mass 
mean 

Count 

Total 4.15 136,322 

Lane 1 4.38 16,939 

Lane 2 4.71 29,480 

Lane 3 4.55 8,429 

Lane 5 4.95 31,552 

Lane 6 2.7 38,760 

Lane 7 4.72 11,162 

Note: the low mean mass in Lane 6 indicates a likely issue with sensors in this lane. 

A review of the raw OBM data found that there were inconsistencies in the way that data was recorded from 
vehicle to vehicle. Some vehicles recorded the steer and drive under the first axle, others recorded just the 
drive axles. Similarly, the location of the mass for the axle groups differed, some had all the groups filled, 
some had no data for some then an axle group mass filled out after having no mass filled for the previous 
groups. This is likely due to not having OBM installed on the axle groups, caused by swapping trailers or 
dollies. Improving the governance of the axle load collected would increase the value of this dataset. 

Figure 5.15 provides a comparison of the GVM based on the OBM and WiM masses, showing the correlation 
of all the GVM records as well as the lanes in which each vehicle was travelling. This shows that the GVM for 
the OBM and WiM correlate well. This correlation may be due to a bias caused by the matching process, this 
identified the best match based on proximity, time and weight. The data clearly shows clusters, the first is in 
the 10 to 30 tonne range, with the second in the 65 to 75 tonne range. 
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Figure 5.15: OBM vs WiM – GVM 

Figure 5.16 provides a comparison of the GVM based on the OBM and WiM masses, showing the correlation 
of the GVM records per lane. The lane level GVM analysis shows a good correlation between WiM and 
OBM. 

 

Figure 5.16: OBM vs WiM – GVM per lane 
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Figure 5.17 provides a comparison of the axle groups based on the OBM and WiM masses, showing the 
correlation of the axle group masses using all the axle groups and the lane of travel.  

Figure 5.18 provides a comparison of the axle groups based on the OBM and WiM masses, showing the 
correlation of the axle group masses using each axle group. It is noted that to improve the correlation of the 
axle groups, the steer and drive masses were merged, based on trial and error.  

Figure 5.17: OBM vs WiM – Axle groups per lane – relationship using all axles 

 

Figure 5.18: OBM vs WiM – Axle groups – relationship using each axle 
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It was found that the GVM analysis had a better correlation than the axle group masses. As identified above, 
this may be due to the matching method which matches based on GVM.  

The estimated WiM mass at Nudgee was less than the mass estimates from both the OBM and IAP data 
extracted from vehicles passing the site. This suggested the Nudgee WiM data was consistently 
underestimating mass during this time and highlights the value of integrating WiM, OBM and IAP crane data 
to improve confidence of mass data from both OBM and WiM data. 

Another possibility is based on the way that the OBM data is managed. A review of the raw data shows: 

1. There is no standardisation in how the OBM data is input and stored. As an example, (i) group 1 can 
sometimes have extremely high values likely to be the total mass but has no other mass recordings, (ii) it 
can also have the steer mass values or (iii) it may not have any mass recorded. When group 1 has no 
mass value recorded, the steer mass may be included in the group 2 mass, or it is not provided. 

2. Other issues include skipped axle groups, with some having multiple axle groups skipped. The reason for 
skipping the axle groups is unclear. This may be due to the trailers or dollies utilised which do not have 
OBM sensors, alternatively the OBM identifies or is instructed that there are no axle groups in-between 
the locations where mass has been indicated. If all the masses are not recorded this would mean that the 
total mass identified in the raw data is not the same as the GVM, which has been assumed in this 
analysis. 

It was generally found that the masses from OBM were larger than from WiM.  

The current alignment is largely based on matching on mass between the two datasets. Other factors to 
consider in the difference between the data are: 

1. The relationship between WiM and seasonal effects – as presented in Figure 5.9 found seasonal 
variation in WiM data at Nudgee, with a lower range in winter months. If the confidence in the OBM data 
can be improved this may enable improved calibration to account for seasonal variations at WiM sites. 
This may also allow for an improved understanding of seasonal calibration factors. 

2. Adjacent ‘ghost’ vehicle – as identified in the Section 5.1.2 on crane WiM and ATO data, the manual 
matching of vehicles identified that there could be vehicle records which are likely to belong to another 
record, both before/after the record vehicle or beside the recorded vehicle. This will result in a vehicle’s 
record underreporting vehicle mass.  

OBM can be useful to calibrate WiM. The following improvements to OBM data will improve its value: 

 standardisation of installation location reporting 
 standardisation of reporting, such that a review of the data does not have uncertainty on the location of 

the sensors 
 increased frequency of reporting location. 

By providing improved specification and governance, this would allow for improved alignment and may 
enable improved understanding if integrated with WiM data and other data sources. This may include the 
integration with ANPR, which may enable the confirmation of the lane and time in which the vehicle of 
interest goes over the WiM site. The use of improved OBM may also be useful to infer vehicle mass on trips 
based on classifier data, as discussed in Section 5.2.  

Using OBM would allow for an improved inference between the WiM and classifier sites based on where the 
vehicles of interest are known to have been. With enough heavy vehicles on the network with OBM, this 
could allow for a real-time understanding of the loads that are occurring on the road infrastructure. 

The OBM dataset remains small and highlights the value in maintaining WiM data collection and integrating 
these datasets with the IAP crane data to improve the quality of both datasets. 

Multi-lane WiM sites make the confident matching of OBM with the WiM record difficult. This would be much 
more straightforward for WiM data collected on two-lane two-way highways.  
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In summary, there is value in its integration with WiM to improve the ongoing calibration of both datasets, 
even though the OBM dataset is small. Targeted enhancements in the way the OBM is installed, as well as 
how the data is reported, would improve the one-to-one correlation between WiM records and OBM vehicles.   

5.1.4 Integrating WiM and ANPR Data 

The objective was to establish the extent to which ANPR data can augment other data sources to improve 
WiM data quality. 

In Queensland, ANPR cameras are installed at 18 WiM sites while an additional 6 camera points are 
planned. An ANPR system typically consists of several video cameras to recognise the image of a heavy 
vehicle and identify the number plate using image processing techniques. ANPR systems are mainly 
deployed for monitoring and enforcement activities. 

At present, WiM measurements and ANPR detections are not automatically integrated. There is an 
opportunity to augment existing TMR WiM activities with the integration of ANPR data to provide more 
definition and quantification of the vehicle categories of interest to this project to better understand the 
causes of extreme effects and the associated risk. Greater integration would also facilitate superior event 
traceability and value extraction from data, for example: 

 Is a vehicle identified with an event or effect in compliance with its licence conditions?  
Timely WiM data can provide more focused enforcement, which in turn can inform WiM calibration.  

 The combination of WiM data and ANPR data could improve the understanding of the relationship 
between WiM data and vehicles with unusual configurations. 

 The combination of (vehicle) on-board weighing, ANPR and WiM data may provide the opportunity for 
auto-calibration of WiM stations.  

 Better data integration could assist with quantification of levels of service and the application of fee 
structures that better reflect value and usage. 

A limitation of WiM systems is their inability to distinguish between overloaded vehicles and vehicles 
operating at higher mass limits under permit. Being able to identify vehicles operating under different mass 
concessions should be addressed to ensure that WiM data has an increased value beyond being used 
simply as a guide to industry behaviour. Thus, linking WiM with systems such as ANPR could allow the user 
to remotely authenticate permits for operation at higher mass. 

Several integrated WiM/ANPR systems are already in operation, both internationally and nationally. 
Examples of the integration of ANPR data with WiM in Victoria, New Zealand and NSW are detailed in this 
section and further details on integrated WiM technologies can be found in Appendix B of Karl et al. (2021). 

WiMs and vehicles of interest to this project 

WiM systems situated at locations frequented by oversize and performance-based standards (PBS) scheme 
vehicles could support growing industry adoption of OBM systems for regulatory applications by providing a 
verification option for mass management purposes under the National Heavy Vehicle Accreditation Scheme 
(NHVAS) or a calibration option for OBM systems. At present, it is difficult for transport operators working in 
remote regions to meet the frequency of calibration required for regulatory applications which WiM systems 
could help resolve. 

WiM data can be integrated with other data sources including traffic volumes, traffic composition 
(i.e. classified counts) and turning movement counts, pavement condition rating, traffic management data, 
road crash data and asset management data such as the location of bridges and tunnels, which may be able 
to further inform the decision-making process for infrastructure expenditure. 

WiM systems can be incorporated with road safety systems, such as steep-descent and rollover warning 
systems, where recording vehicle mass is a critical measurement to ensure that accurate information is 
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provided (Austroads 2016). By incorporating variable message signs (VMS), personalised warnings can be 
provided directly to at-risk vehicles. 

WiM systems can also be used with VMS at locations with infrastructure such as bridges that could be 
affected by vehicles with heavy axle loads or overall vehicle mass. By using the WiM system as a screening 
tool, messages can be provided to these vehicles advising them to seek alternative routes.  

5.1.5 Assessing Data Quality Using Steer Axle Mass 

Before any dataset can be used for any analysis, it must be cleaned of known inaccurate and erroneous data 
as well as filtered to focus on the areas of interest. This allows for increased confidence in the dataset and 
ensures there will not be an impact on the analysis.  

A process of benchmarking the steer axle mass of 123 vehicle configurations to identify the level of 
confidence in the dataset was created (Section 3.3.2). This process also identified where a WiM site may be 
out of calibration. This is important as the WiM data provides insight into the heaviest vehicles on the 
network and informs the risk management and due diligence of the bridges on the network. The additional 
tasks undertaken to improve the understanding of the data, thus the quality, included: 

 identifying the accuracy of WiM and classifier axle spacing measurements 
 the impact of measurement accuracy in determining configuration 
 the impact of measurement accuracy in identifying vehicles of interest. 

The characteristics of the WiM and classifier data as well as the resulting quality measures and filters are 
discussed further in Section 3. 

5.2 WiM to Classifier Extrapolation 

5.2.1 Introduction 

Over the next few years, 1,000 classifiers across Queensland are expected to come online as temporary 
classifier installations become mobile network connected and begin to transfer data to TMR servers daily, as 
shown in Figure 5.19 as blue points. Classifiers are also cheaper to install and maintain than WiM sites. As 
noted in Appendix B, these sites provide information on the vehicle types and counts traveling over a site. 
However, they do not provide vehicle mass data and therefore cannot replace WiM data.  

During the study 23 WiM sites located on important road segments such as major highways and near 
vulnerable infrastructure were active, as shown in Figure 5.19 as green points.  

This presents the opportunity to leverage the existing WiM infrastructure to increase the value of the growing 
classifier network. The project explored the capability of using existing WiM sites to augment classifier data, 
by extrapolating mass records from a WiM site with similar traffic onto the classifier records. 

The extrapolated WiM would allow for the assessment of the expected vehicle mass for the vehicles of 
interest across Queensland, while maintaining the benefit of the reduced costs associated with the classifier 
sites.   
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Figure 5.19: Location of WiMs and classifiers used in the project 

5.2.2 Objectives 

This section has three objectives:  

1. evaluate the similarity of heavy vehicle traffic at WiM sites and classifier sites 
2. predict mass at classifier sites from WiM sites with similar vehicle distributions 
3. identify how extrapolating mass can increase the coverage and understanding of the axle loads on the 

Queensland road network. 

These objectives cover the when, how and how-many questions of WiM to classifier extrapolation. The 
second objective is dependent on the first, a similarity statistic must be defined which provides information 
regarding the quality of an extrapolation. It is trivial to take data recorded at a WiM site and apply it to a 
classifier location, however it is not clear if this data is representative of the local traffic and movements and 
the target location. Therefore, a similarity statistic (objective 1) is required which can evaluate how similar a 
source WiM site is to a target classifier location before extrapolating WiM data (objective 2). The final 
objective considers how the process of extrapolation is dependent on the similarity between WiM and 
classifier sites, and if there is enough similarity between them to perform extrapolation for a sufficient number 
of sites.  

5.2.3 Evaluating WiM Similarity  

To understand if the WiM data measured at one site is likely to be representative of the WiM data at a 
classifier site, a method was developed which assessed the similarity between sites comparing the data 
types available at both sites. 

  

 
Note: WiM sites are shown in yellow and Classifiers in blue. 
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The method relies on an assumed correlation between the distributions of axle spacing and configuration to 
the GVM. This correlation is taken advantage of using the site similarity objective function, detailed in 
Equation 1 and Appendix M of Eskew et al. (2021). The degree of similarity between the sites was compared 
using axle spacings, distributions of configurations and GVM. This was undertaken first at the WiM sites only, 
to allow for validation of the similarity. This assessed: 

 similarity between vehicle configuration probability distributions indicating similar general traffic 

 similarity between the axle spacing probability distributions for similar configurations indicating that the 
specific vehicles in traffic are similar 

 similarity of the axle group mass probability distributions for similar configurations (where available) 
indicating that the vehicles are transporting similar loads.  

The site similarity statistic is determined through a weighted ratio of the difference in axle spacing 𝜃ௌ and 
configuration 𝜃 between sites. These weights were balanced (𝑊  =  𝑊 =  1).  
 

𝜃ଵ,ଶ =
𝑊𝜃,ଵ,ଶ + 𝑊ௌ𝜃ௌ,ଵ,ଶ

𝑊 + 𝑊ௌ

 
1 

where    

θ1,2 = 
multi-objective assessment between the reference and comparison 
datasets 

 

1 = the reference dataset  

2 = the comparison dataset  

WVC = the vehicle configuration objective function weight 
 

θVC,1,2 = 
the objective value for vehicle configuration distribution between the 
reference and comparison datasets 

 

WAS = the axle spacing objective function weight 
 

θAS,1,2 = 
the objective value for axle spacing between the reference and 
comparison datasets. 

 

 

 

Using this statistic, the similarity of WiM or classifier sites can be calculated using axle spacing and 
configuration frequencies. As the primary purpose of this statistic is to establish how similar a WiM and 
classifier site is, GVM data cannot be used to calculate the similarity statistic but can be used to validate the 
methodology by comparing WiM sites. To evaluate the viability of this statistic in choosing WiM data which 
may be extrapolated to classifier sites, the difference in GVM profiles between these sites must correlate with 
the similarity objective function. This can be evaluated using the D-statistic of the two sample 
Kolmogorov-Smirnov test, where a high site similarity objective function value should yield a low D-statistic 
value14. To test this hypothesis, WiMs of confidence class B or greater from January 2019 to February 2020 
at 20 sites was used to calculate the GVM, vehicle configuration and axle spacing distributions on a per site 
basis. 

  

 

14 The D-statistic measures the maximum vertical difference between the cumulative distribution functions of the two samples. A 
high D-statistic implies that two distributions are dissimilar. 
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5.2.4 Site Similarity Statistic Correlates with GVM Similarity 

The similarity statistic, as explained in Section 5.2.3, combines discrete distributions of vehicle configuration 
with the continuous distribution of axle spacing grouped by configuration. Using this statistic, WiM sites with 
a high degree of similarity were identified and the relationship between the similarity statistic and the 
difference in GVM distributions was considered (via the Kolmogorov-Smirnov two sample test). This process 
acts as ground truth or benchmark for the predicted similarity score that can be calculated between WiM 
and classifiers. The regression statistics of this relationship are shown in Table 5.4, with a reasonably high 
R2 value of 0.75. Site pairs with high similarity correlate well with the D-statistic, however medium scores for 
site similarity were found to be less well correlated. This population may indicate that the site similarity 
statistic can be further optimised. In its current form, the site similarity statistic is unable to be used as a 
continuous predictor of how representative a WiM site is of a classifier. Instead, a threshold value is 
proposed where as long as the similarity statistic is above some value, the sites are considered similar.  

The population of interest shown in the red box in Figure 5.20 has high site similarity and low D-statistic, 
indicating that the site pairs within this area may have the data extrapolated. This is due to the much higher 
degree of correlation (closeness to the 45-degree line) and the very low difference in GVM distributions 
between the sites (low values in the y-axis or D-statistic) This population can be numerically defined as site 
pairs with a similarity statistic greater than 0.85. Alternatively, this population can also be defined as those 
pairs with a D-statistic of less than 0.2, however this definition is not useful when comparing WiM to classifier 
sites, as the D-statistic between GVM distributions cannot be calculated. 

Table 5.4: Regression statistics for D-statistic against objective function 

Regression statistic Value 

R square 0.748 

Standard error 0.011 

Observations 380 

Intercept 1.51 

Slope  −1.50 
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Figure 5.20: Site similarity statistic against KS statistic two sample test 

Based on the correlation between GVM similarity and the site similarity objective function (R2 = 0.75), 
approximating GVM profiles to classifier sites was concluded to be viable. This statistic can predict 
how similar a site’s GVM profile is without GVM data.  

Extrapolating GVM profiles requires high site similarity  

Extrapolating dissimilar WiM data to classifier sites will result in unrepresentative GVM profiling. Crucially, 
the objective function similarity statistic, as discussed above, can identify appropriate instances to 
extrapolate (the higher the similarity the better). The minimum similarity index can was set at a lower bound 
of 0.85 based on a reduced correlation to the D-statistic below this threshold. When similarity values below 
0.85 are observed, the correlation between D-statistic and similarity score diminishes, and the predictor is no 
longer describing how similar the two sites are. Secondly, when the similarity score is higher than 0.85, the 
observed low D-statistic values show that the GVM distributions between the sites are similar, which is a key 
criterion for extrapolation, as the source of data should match the targeted or missing data’s GVM 
distribution.  

Approximately 20% of WiM site pairs have a similarity objective function value greater than 0.85 as seen in 
Figure 5.21. Based on these results alone it is believed that at least 20% of WiM to classifier site pairs could 
benefit from extrapolated WiM data. A systematic analysis of the relationship between the acceptable level of 
error in the extrapolated GVM and the true GVM could result in an updated lower bound which may increase 
the volume of classifier sites for which mass can be extrapolated without introducing substantial error.  

 

Note: The blue dashed lines show how correlation increases as site similarity increases. The higher the correlation the more likely the objective 
function is a strong indicator of site extrapolation viability. The closer the points are to the 45-degree line the better correlated the GVM 
KS D-statistc is to site similarity.   

Suitable for extrapolation 
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Figure 5.21: Volume of WiM site pairs with an acceptable level of site similarity 

The site similarity statistic suggests that care is required in selecting sites to extrapolate between and WiM 
sites distributed across the highway network at locations representing the various access regimes and freight 
tasks/demands will provide the best opportunity for extrapolating data to all areas of the state. 

5.2.5 Extrapolating WiM Data 

WiM data inspiring an appropriate level of confidence (use case dependent) can be used to generate 
measured distributions of parameters of interest by vehicle configuration.  

The measured distributions can then be extrapolated based on vehicle counts (by configuration) at a 
classifier site with similar traffic. In other words, distributions of vehicle characteristics from an origin site are 
scaled by the ratio of the number of vehicles at the origin site to the number of vehicles with the same 
configuration at the target site. 

This gives an estimate of the expected mass at the classifier site without additional capital expenditure. 
While the objective is to extrapolate WiM data to classifier data, the accuracy of this procedure cannot be 
directly assessed as the GVM profile is unknown at the classifier site. In contrast, WiM data can be 
extrapolated from one site to another WiM site and the error in the predicted GVM profile can be calculated. 
The effectiveness of the extrapolation from WiM to classifier can therefore be inferred from the results of 
extrapolation from WiM to WiM.  

An example of this procedure, carried out between two WiM sites, is shown in Figure 5.22(a) and 
Figure 5.23(a) where the solid line is the actual GVM distribution and the dashed line is the extrapolated 
distribution. Overestimations of the GVM are shaded red and underestimations shaded yellow. The larger 
errors in Figure 5.23(a) are associated with a poor similarity whereas the smaller errors evident in 
Figure 5.22(a) are associated with a much higher similarity. The cumulative extrapolated distributions are 
shown in Figure 5.22(b) and Figure 5.23(b) where the actual GVM cumulative distribution is shown in light 
blue, and the extrapolated GVM in dark blue. The solid red lines in Figure 5.22(b) and Figure 5.23(b) show 
the error in the extrapolation. The figures show that the site similarity statistic is accurately predicting the 
quality of the extrapolation, with the Gatton extrapolation having a high similarity and low error while the 
Cloncurry extrapolation has low similarity and much higher error. This consistency in the site similarity 

 

Note: The green population is the same as that in the red box shown in Figure 5.20. 
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value is emphasised because it is the only available indicator of the quality of an extrapolation 
between a WiM site and a classifier site.  

Figure 5.24 shows the extrapolation of the multi-objective function for five sites based on the similarity of 
WiM sites. The columns show mass distribution for the target site, while the rows show the site which was 
used to extrapolate the data from. For example, the top right figure shows the target site of Belmont (north) 
WiM - Barcaldine WiM was used to extrapolate for Belmont (north). Similarly, the bottom left figure shows the 
target site of Barcaldine WiM, for which the mass from the Belmont (North) WiM was used to extrapolate for 
Barcaldine. The distribution matrix shows how similar the extrapolated (dashed line) and true (solid line) 
GVM distributions are. Over-estimates are shaded red, and underestimates yellow. The higher the similarity 
between the sites, as shown in the top right of each chart, the less shaded area is expected. 

 

  

Figure 5.22: Extrapolation of GVM from a WiM site to a classifier – validation example using the class B 
confidence records from Gatton WiM to the Belmont (north) WiM 

(a) Extrapolation (b) Absolute error of extrapolated GVM and cumulative 
distribution 

 

 

 

Figure 5.23: Extrapolation of GVM from a WiM site to a classifier – validation example using the class B 
confidence records from Cloncurry WiM to the Hotham WiM 

(a) Extrapolation (b) Absolute error of extrapolated GVM and 
cumulative distribution 
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Figure 5.24: Extrapolation of GVM from a WiM site to a classifier 

Note: X-axis provides the GVM of the vehicle in tonnes. 

5.2.6 Classifier Coverage 

Section 5.2.5 shows the method of extrapolating WiM data and when the extrapolation will be representative 
of the site of interest. These methods satisfy objective 1 and objective 2 of Section 5.2.2, however they may 
be impractical if there are insufficient WiM sites which are representative of classifier sites. To investigate 
this, the closest WiM site which could be used to extrapolate data to a classifier was calculated using the 
method shown in the pseudo code in Figure 5.25. As per the pseudo code, the similarity score was 
calculated for each WiM to classifier pair in the dataset. The closest classifier and WiM pair with a similarity 
score greater than 0.85 is plotted in Figure 5.26.  

These WiM and classifier pairs show a general tendency to cluster, as expected based on the classification 
criteria. In the zoomed image, the southernmost WiM site is identified as the best candidate to extrapolate 
data to several classifiers along a continuous highway, which the WiM site is also on. In this case, the WiM 
site chosen as the most likely to represent the classifier sites is consistent with the flow of traffic. In other 
cases, the cause of the similarity is less clear. For example, the northernmost WiM site in the left image of 
Figure 5.26 is considered more representative for classifiers in Townsville than the WiM site just south of the 
city. The similarity score only factors in the frequency of vehicle configurations and distribution of axle 
spacings when determining similarity. It is possible that while some sites may be closer, this northern WiM 
site is more representative due to the similarity in vehicle activity in the local area, this could be confirmed by 
conferring with local experts familiar with vehicle activity and industrial activity in these regions. In absence of 
an expert familiar with the types of vehicles and loads travelling through classifier sites, this algorithm 
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shown in Figure 5.25 can automatically identify potential WiM sites which can be used to extrapolate 
data to classifiers.  

In Figure 5.26, classifier sites which did not have a similarity score greater than 0.85 for any WiM site are not 
plotted. To see how many WiM to classifier pairs were viable (similarity > 0.85), 95 classifiers were 
compared against 20 WiM stations to generate Figure 5.26. 93 classifier sites had a similarity score of 
greater than 0.85 for at least one of these WiM sites. This indicates 97% of classifier sites have enough 
similarity to WiM sites to allow for extrapolation from at least one site. Previously, the likelihood of one 
WiM matching with another classifier was inferred to be ~20%, but because there are multiple WiM sites 
across the network the likelihood that at least one has a similarity score greater than 0.85 for any given 
classifier is much greater than 20%.  

Figure 5.25: Pseudo code for finding the closest WiM site which data can be extrapolated from 

FOR each classifier site 𝐶 

 FOR each WiM site 𝑊 

  Similarity: 𝑆 = L1(𝐶,𝑊)   [See Figure 5.20] 

  Distance 𝐷  = Geodetic_distance (𝐶,𝑊) 

  IF 𝑆 > 0.85 : 

   Set Covered_by_WiM[𝐶] = TRUE 

  IF 𝐷 < Minimum_distance_to_WiM[𝐶] 

   Set Minimum_distance_to_WiM[𝐶]= Distance(𝐶,𝑊) 

   Set Best_WiM_site[𝐶] = 𝑊 

FOR each classifier site 𝐶 

  If Covered_by_WiM[𝐶] is TRUE 

  Plot classifier site 𝐶 

  Plot best_WiM_Site[𝐶] 

  Plot line between site 𝐶 and Best_WiM_site[𝐶] 
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Figure 5.26: Closest WiM site (blue) which could be extrapolated to a classifier site (red) – black lines are drawn 
between the WiM and classifier pairs 

Figure 5.27 shows the sensitivity of the coverage to changing the threshold similarity score where the higher 
the threshold similarity score the lower the number of WiM sites which can be extrapolated to classifier sites. 
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Figure 5.27: Closest WiM site (blue) which could be extrapolated to a classifier site (red) based on similarity 

 

(a) Similarity threshold of 0.70 (b) Similarity threshold of 0.80 

  

(c) Similarity threshold of 0.85 (d) Similarity threshold of 0.90 

  

(e) Similarity threshold of 0.95 (f) Similarity score legend 
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5.2.7 Discussion  

The site similarity statistic is used to identify candidates for pairing WiM and classifier sites, where an 
extrapolation of WiM GVM data would be representative. While strong correlation was seen at values greater 
than 0.85 to the D-statistic, the value of the similarity score diminished greatly below 0.7. This is a non-issue 
when performing a single one-site to one-site extrapolation, however future efforts may consider how WiM 
data from multiple sites can be combined to increase the quality of the extrapolated data. Optimisation of the 
similarity score formula could greatly improve the accuracy of this proposed multi-site extrapolation by better 
distinguishing between different sites with similar similarity scores.  

This optimisation task is designed to tune to the weighted effects of axle spacing and configuration 
differences which serve as inputs to the objective function shown in Equation 1. Through minimising the 
difference in similarity score and the D-statistic by adjustment of the weights, deviation from the linear 
correlation line in Figure 5.20 is reduced and the predictive value of the similarity score is improved.  

Furthermore, it may be possible to extrapolate WiM data to locations where neither a WiM site, nor a 
classifier is present through integrating several classifiers and WiM sites. Song et al. (2019) proposes a 
geospatial extrapolation methodology to predict traffic volumes of heavy vehicles across a road network 
based on point data sources. This methodology interpolates traffic count data between points in the network 
through using a regression model known as kriging (Song et al. 2019). One primary advantage of kriging 
methods over WiM to classifier site extrapolation is that the GVM distribution of any road segment in 
Queensland could be predicted. Previous attempts to perform kriging with the existing WiM network were 
significantly limited by the rate of coverage of WiM across the network (Hore-Lacey et al. 2020). While not 
impossible to perform kriging interpolation when network coverage is low, confidence intervals over resultant 
predictions are so wide they offer little value relative to guess work.  

Strong correlations between axle spacing and GVM distribution that became evident as part of this 
investigation can contribute to future extrapolation and interpolation investigations. While the methodology 
focused chiefly on extrapolating WiM data to classifiers, if traffic data is available, this methodology can be 
easily extended to other datasets, such as ANPR, segmented IAP and even telematics data. The site 
similarity and extrapolation procedures required aggregated data on vehicle type and axle spacing. Where 
this data is available the methodology can be repurposed. Combining the point-to-point based methods 
documented here with kriging interpolation could greatly improve the geospatial coverage of GVM profiling.  

5.2.8 Recommendations and Conclusions 

These methods aim to replace missing data in the case of failing or unreliable WiM sites or to generate GVM 
profiles where WiM records do not exist. The investigation has generated the following recommendations for 
proper extrapolation of WiM data to classifier data: 

 Extrapolation of WiM data to other sites is possible with care. 

 The similarity score provides a method for rating the appropriateness of the extrapolation. 

 WiM data should only be extrapolated if the site similarity statistic is greater than 0.85. 

 It is not clear if a site with a higher site similarity statistic will result in a better extrapolation than another if 
both are greater than 0.85.  

 In the analysed dataset (98 classifiers and 20 WiM sites) 97% of classifier sites had a similarity score 
greater than 0.85 with at least one WiM site. 

 Extrapolation of WiM data via other technologies such as ANPR may also be effective. 

 The trial has demonstrated the viability of the extrapolation process for GVM. It may be possible to 
extend this extrapolation of other parameters such as axle group mass, pavement and bridge loading 
statistics. 
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5.3 Prototype Tracking Tool 

5.3.1 Introduction 

Tracking oversized overmass vehicles across the Queensland network enhances the value of WiM data by 
allowing the investigator to know where a vehicle of interest has been before. Not only can multiple records 
be attributed to the same vehicle, but the trip and destination of the vehicle can also be inferred. The data 
can be used in real-time predictive and monitoring applications as well as retrospective analysis.  

In contrast to an isolated WiM record, a vehicle trip can be used to confirm all infrastructure crossings even if 
these assets are far from any WiM or classifier sites. Knowing the source of a WiM record at different sites 
can also be used to improve confidence in the axle spacing and mass data for the vehicle, for retrospective 
mass calibration at the site, particularly when the vehicle is known to have a consistent weight, as in the 
case of cranes and load platforms transporting indivisible loads. Given the numerous potential values of 
tracking vehicles in combination with measuring mass, this section explores the practicality of tracking 
vehicles using WiM and classifier data.  

WiM and classifier records15 do not contain a unique vehicle identifier. This limits applications of WiM for 
tracking vehicles to vehicles where the ‘axle spacing footprint' is uncommon during the travel window. This is 
the case for the specific vehicles of interest to this project, such as low loaders, load platforms and cranes.  

This section focuses on methods which can identify WiM records originating from the same vehicle on the 
same trip, with an emphasis on vehicle tracking.   

A key principle of vWiM is achieving additional value through the combination of complementary datasets, 
allowing the data within each to offset the limitations of the other(s). An example of this is vehicle tracking. 
Because the numbers of load platforms and low loaders on the network are low (< 1% of daily traffic), it is 
possible in many instances to identify records from a specific vehicle as it travels across Queensland based 
on its configuration and axle 'footprint'.  

5.3.2 Objective 

The objective of this section is to understand the feasibility of tracking special vehicles of interest and future 
requirements needed to extend this function to routine activity. 

5.3.3 Methodology 

By merging WiM and classifier data, the density of sites collecting data is effectively increased, improving the 
odds of identifying the trips taken by vehicles of interest. If, for example, a vehicle tracked across multiple 
classifier sites also crosses a WiM site, the data from the WiM site becomes ‘virtually’ known at the other 
sites. It is possible that a vehicle may only be laden for part of a trip or may change loads, however, because 
the vehicles are permitted to carry indivisible loads, it is less likely. When it is possible to track a vehicle in 
this way, periods where data are inaccurate or lost at individual sites becomes less mission critical – value 
and redundancy are increased.  

Due to the high volume of WiM movements observed each day over the TMR network, manually inspecting 
individual records to find common characteristics is time consuming and unsuited for most applications. To 
meet these aims, a methodology was developed to track vehicles from one WiM or classifier site to another. 
The approach uses an algorithm which automatically identifies records in the WiM and classifier dataset 
which could be from the same vehicle traveling across the network. 

 

15 Unless they are integrated with ANPR. 
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Matching records were identified by comparing the records of a reference vehicle of interest’s axle spacing to 
all records of the same vehicle configuration within 10 days of the initial observation. Vehicle mass was not 
chosen for use in the matching algorithm, due to mass not being included in the classifier dataset. 

The performance of the algorithm was benchmarked using a representative dataset of WiM and classifier 
records in combination with a small sample of IAP data which contains unique vehicle identifiers.  

Lastly, the vehicle trips and the infrastructure crossings were inferred and presented as an application of 
WiM Class 1 heavy vehicle tracking. 

Class 1 heavy vehicle WiM data characteristics  

The likelihood of matching WiM records originating from the same vehicle is dependent on variation in axle 
spacing and configuration, referred to as the vehicle footprint. To investigate the general characteristics of 
low loader and load platform WiM records, a test dataset of Class 1 heavy vehicle configurations from 
January 2019 to February 2020 was used. The composition of this dataset is shown in Figure 5.28. 

In the dataset 142 sites contained a minimum of 1,000 WiM record events and 293 different vehicle 
configurations were observed. Ninety-seven vehicle configurations had less than 1,000 records across all 
sites. While this indicates that for some vehicle types matching could be done solely with the vehicle 
configuration, between 10,000 and 200,000 records were found for the 5 most common configurations. 
Vehicles with these configurations are indistinguishable from each other using configuration alone. 
Therefore, to increase the uniqueness of the WiM records for matching purposes, the following additional 
characteristics were identified as likely candidates to be used as a pseudo-identifier: 

 axle spacing 
 time between records 
 location of records. 

Matching algorithm 

Vehicle records were identified as potential matches to a reference record if the following conditions were 
satisfied: 

 Records had the same configuration. 
 The time between records was less than 10 days. 
 The differences in all matching axle spacings between the reference and comparison records were within 

± 200 mm. 

Figure 5.28: Most common low loader and load platform configurations 2019–2020 
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For potentially matching records, the average variation between axle spacings for two records with matching 
configurations was evaluated to assess fitness of the match using Equation 2. 

∆௦=
∑ ห𝑠, − 𝑠,ห

ௌ
ୀଵ

𝑆
 

2 

where    

Δs = 
the average variation in axle spacings between the comparison and reference 
vehicle 

 

S = the number of axle spacings in the vehicle configuration  

sc,i = the ith axle spacing of the comparison vehicle  

sr,i = the ith axle spacing of the reference vehicle  

If Δs is less than 200 mm, then the pair of records was considered a match. Pairs which shared a common 
record were then collected into trips which were sorted by time. 

Matching results 

To explore the value of the matching algorithm, a best-case scenario was created. Over the one-year period, 
records with configuration classes observed more than 1,000 times were excluded. The remaining 
97 configurations are so unique that they are expected to originate from a small number of vehicles, 
significantly decreasing the chance of false positives. Using this filtered dataset matched records identified 
using the algorithm became WiM records pairs and were predicted to have the same vehicle source.  

By combining these pairs which share a record, vehicle trips were constructed and shown in Table 5.5. 
These trips were calculated using shortest time routing over Queensland’s road network. Bridge crossings 
highlighted in green were identified using the geospatial location to find intersecting road link identifiers. Out 
of 97 configurations and 11,095 WiM records, 723 unique trips were found. The best-case dataset of rare 
vehicle configurations represents 2.6% (11,095 out of 420,737) of all WiM and classifier records in the 
Class 1 heavy vehicle categories. Of these records, 34% were assignable to unique trips. Based on the 
characteristics of the WiM data, a lower bound of 34% of Class 1 heavy vehicle WiM activities can be tracked 
effectively using the vehicle footprint algorithm when not considering accuracy.  

Algorithm routing and coverage 

To determine the most likely trip of these matched records, map matching, in combination with a routing 
algorithm which was developed in NACOE R103 (Hore-Lacey et al. 2020) was used. The most likely trip is 
always considered to be the shortest trip by time when travelling at the speed limit. As the vehicles of interest 
are low loaders and load platforms, the networking was restricted to within 100 m of the ‘Heavy Vehicle 
Routes’ network (Queensland Department of Resources 2021). 

By determining the vehicle’s trip, infrastructure crossings of interest can be detected. In this example, it 
cannot be assumed that all vehicles detected at the north eastern WiM site crossed over the highlighted 
bridge. Using the tracking algorithm and routing methodology, bridge crossings can be inferred for individual 
vehicles based on the order of the movements.  

Trips presented in Table 5.5 are merely meant to demonstrate the value of vehicle tracking for surfaces 
distant from WiM and classifier sites, and do not always reflect the true path of the vehicle. As the trip’s 
complexity increases, the likelihood that the true trip is the same as the predicted trip decreases. For 
example, it is highly likely the first trip shown in Table 5.5 represents the true path of the vehicle, as there are 
few opportunities to deviate between the sightings. In the remaining trips there are many ways the vehicle 
can traverse the network between the sightings, reducing the likelihood that these predicted trips reflect the 
true trip. 
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Table 5.5: Summary of journeys for 3 sample trips  

Count Journey Configuration 

3 

  

1229 

 

5 
1227 

 

8 
225 

 

5.3.4  IAP Validation 

While the total number of vehicles which are potentially trackable was shown in the previous sections, the 
accuracy of these tracked trips is unable to be determined with WiM and classifier data alone. In this context, 
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accuracy refers to the number of times WiM and classifier records were correctly identified to originate from 
the same vehicle. To understand if matched sets returned by the algorithm all originate from the same 
vehicle, a separate IAP WiM merged dataset was used. IAP data is provided per vehicle over the entire 
network. By comparing IAP records from the same vehicle at WiM sites to vehicle trips generated via the 
tracking algorithm, the accuracy of the algorithm can be determined.  

One month of IAP tagged vehicle records were matched to WiM movements at the Nudgee site, the same 
data used in Section 5.1. Using the same method from Section 5.1, IAP records were aligned with WiM 
movements using geospatial and temporal alignment. By synthesising the IAP and WiM data, unique vehicle 
identifiers were associated with WiM records. These identifiers were then used to validate the accuracy of 
the vehicle tracking algorithm. If a vehicle trip is accurate, then all records within the trip should have the 
same vehicle identifier. The matching algorithm was used to find pairs of records which crossed the Nudgee 
site and were predicted to be from the same vehicle. For each pair, a pass was assigned if the IAP vehicle 
IDs were identical. The pass rate is presented as the accuracy of the algorithm categorised by configuration 
in Table 5.6. 

This IAP linked validation does not contain any low loader or load platform records, as none are enrolled in 
the IAP, and is therefore not necessarily representative of the vehicles of interest. A breakdown of the rate of 
accuracy of the alignment algorithm is shown in Table 5.6. The average accuracy of the matching 
algorithm was 38%. Based on these results, an accuracy statistic for the more common Class 1 heavy 
vehicle configurations described in Figure 5.28 is expected to be at most 38%. This is based on the average 
rate of successful vehicle matches with the same IAP vehicle identifier from Table 5.6. Interestingly, the 
rate of accuracy correlates with the number of vehicles in the vehicle configuration, with rarer 
configurations having a higher accuracy than more common configurations. With an average accuracy of 
38% it is expected that if all vehicle configurations were processed ~12.8% of all Class 1 heavy vehicle 
movements could be tracked using this methodology.  

Table 5.6: IAP validation of tracking accuracy  

Configurations Accuracy (%) Sample size 

111 19.13 27,756 

112 25.20 8,045 

1212 50. 73 805 

122 56.52 2,333 

1222 46.34 4,123 

12222 50.00 457 

123 21.89 107,807 

1233 47.05 6,895 

Average 37.99  

This adjacent IAP validation demonstrates that vehicle matching using WiM footprints is only feasible when 
the vehicle configuration and axle spacings are significantly rare. For most vehicles, and even some low 
loader configurations, this is not the case. While low loaders and load platforms are relatively unique, the 
consistency of axle spacing and configuration measurements between sites was lower than expected. This 
resulted in fewer matches than what is possible using a vehicle footprint alone.  

Two possible reasons for a lower-than-expected match volume and accuracy are: 

 Variance in the axle spacing measurements between sites is greater than variance between different 
unique axle spacings. 

 Vehicle configurations are not being classified in the same way or the classification windows are 
unsuitable for vehicle tracking.  

Further investigation is needed into how IAP and alternative data sources could complement this tracking 
methodology to improve the volume and accuracy of the tracking algorithm. The validation was performed for 
only one site (Nudgee) and may not represent the accuracy of trips in different areas of Queensland.  
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5.3.5 Tracking Tools  

As part of the project, PowerBI interfaces for visualising the detected trips were developed. These tools 
receive processed data from Python scripts, which output CSV files containing tracked trips, axle spacings 
and site locations. The static sites generated display 13 months worth of WiM and classifier data (Jan 2019 – 
Jan 2020), their respective trips and summary statistics. 

These tools allow the user to interactively view the axle mass and axle spacings at sites where the vehicle 
was detected. In the PowerBI application, the following three pages detail the objectives required to 
interrogate WiM data and their trips, expanded upon in Table 5.7. Collectively, the tracking tools allow the 
user to find records of interest based on their configuration, mass, location and timings in the data control 
page. If this record of interest is part of a trip, the locations and axle masses can be viewed in the vehicle 
tracking page. The tracking and data control pages provide highly granular information on individual records 
and trips. In contrast, the WiM device map page provides aggregated statistics per site and is intended to be 
used to assess the quality of data coming from different WiM sites. 

The following section covers the features and functionality of the tracking tools. 

Table 5.7: PowerBI feature and function summary  

Page name Functionality Objective 

Data control  Filter the entire WiM and classifier datasets based on vehicle type, time of 
day, record confidence, mass and site 

 See GVM distributions of all sites 

 See location of records which are included after data filtering 

 Identify vehicle trips from a known starting record 

 To find a specific vehicle’s WiM based 
on factors such as time of day, mass 
and vehicle configuration 

WiM device map  Filter map based on WiM device type 

 Visualise GVM against speed, speed histogram 

 See summary statistics such as vehicle count, GVM count, average steer 
and axle mass, and configuration frequency 

 To compare the quality and reliability of 
WiM and classifier sites  

Vehicle tracking  Collect records which are part of a common trip 

 View the locations of WiM sites within the trip 

 Where available view axle mass distributions of records within the trip 

 To investigate individual trips taken by 
specific vehicles 

 Highlight differences between the axle 
masses of the same vehicle at different 
sites  

Data control page 

The data control page provides filters to find individual WiM records, and subsections of WiM data which may 
be anomalous or unexpected, as shown in Figure 5.29. Both classifier and WiM data can be filtered. Data 
presentation windows are highlighted in orange, while data filter windows are highlighted blue. Adjusting the 
filters will alter the data presented in orange windows. Data can be filtered by: 

 site location 
 gross vehicle mass 
 steer axle mass 
 vehicle configuration 
 steer axle type 
 record confidence 
 dolly type 
 trip identifier 
 trailer type. 
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The data is then visualised in the following windows: 

GVM distribution – A histogram of the gross vehicle mass (tonnes) of all records encompassed by the filter. 
Minimum and maximum values can be set by dragging the slider. 

Site map – Locations of the data records categorised by type and quality of data. Clicking a site on the map 
will filter data displayed to only include records from this site. 

Monthly GVM box and whisker 

Box and whisker plot of the GVM by month. The mean is shown as a white dot. The shaded area shows data 
from the first to the third quartile, with whiskers showing the minimum and maximum values of the data. 
Classifier data is not included in the plot.  

Record table – Shows individual records and any metadata, such as time of recording, location, GVM (if 
WiM record) and vehicle configuration.  

 
  

Figure 5.29: WiM and classifier data control page  
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Combining data filters 

In Figure 5.30, two filters have been combined to view all records with a GVM greater than 151 t with a 
1227 axle configuration. All the filters can be combined to focus on specific vehicles of interest or exclude 
vehicle populations which may be irrelevant to the analysis.  

Figure 5.30: WiM and classifier data control page with filtering enabled, active filters are shown inside red 
boxes 

Exporting data  

The data control page can also be used to create segmented datasets of WiM and classifier data, by right 
clicking the table and selecting ‘show as table’, as shown in Figure 5.31. Using the ellipse in the top 
right-hand corner will allow the user to export the table as an Excel spreadsheet. Note that only 
150,000 rows can be exported at a time. 

 

 

 

 

 

 

WiM site data summary 

The WiM data summary page visualises aggregated GVM, configuration and speed accuracy on a per site 
basis. By hovering over site locations on the map, the summary tooltip will appear. WiM sites of a specific 
type can also be filtered on the map. 

 

Figure 5.31: WiM and classifier data control page with filtering enabled, active filters are shown inside Red boxes 
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Site map – Locations of WiM sites coloured based on the WiM device type are shown. Hovering over a WiM 
site will show the site tooltip. 

Station filter – The station filter shows all WiM stations in the dataset. Users can search for specific stations 
using the station filter. 

Site tooltip – The site tooltip will appear when the mouse hovers over a site, example tooltips for sites are 
provided in Figure 5.32 and Figure 5.33. The following information is provided in the tooltip for the site: 

 Speed histogram – Frequency histogram of the speed at which records travel through the WiM site.  

 Gross vehicle mass against speed scatter plot – The GVM against speed plotted for each record. 

 Vehicle configuration count – Number of vehicles observed for the 8 most common configurations. 
Scrolling down in this window will show less common configurations.  

 Summary statistics – A number of summary statistics are shown, which include: 

– average 123 steer axle mass 
– number of 123 steer axle records 
– 123 steer axle mass standard deviation 
– total vehicles recorded at site 
– speed limit of site. 

 Bar chart of record confidence – This window shows the count of records and the confidence class per 
month, calculated based on the average (and deviation) in steer axle mass in 123 vehicles. All records 
within the month will have the same confidence value.  

Figure 5.32: WiM Site Summary page, Barcaldine example 
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Figure 5.33: WiM Site Summary page Cloncurry example 

Vehicle tracking page 

The vehicle tracking page shows individual trips and the locations of WiM and classifier crossings. Specific 
trips can be selected using the trip filter, and trips which occurred within a specific date range can be found 
as well. Axle spacing and axle masses for every record in the trip are shown in the right-hand scatter plot. 
Examples of the vehicle tracking page are provided in Figure 5.34 and Figure 5.35. 

Data filters 

Similar to the data filter page, trips can be filtered based on the site location, date and vehicle identifier. 
These filters are useful if a user wants to find trips which pass through a specific location in a specific 
direction.  

Trip map 

The map of the observed location in the trip is displayed. Locations are coloured based on the WiM/classifier 
sites identified as being part of a trip. 

Axle spacing and axle mass chart 

This plot shows the distance of each axle from the steer axle in the X axis and the mass of each axle in the 
Y axis. This is used to confirm the similarity in records collected into the trip.  

Record table 

This record table shows the relevant information for the records in the trips.  
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Figure 5.34: Vehicle tracking example from Gatton to Southbrook, with class B confidence WiM masses 

 

Figure 5.35: Another example of vehicle tracking which included classifier sites 
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5.3.6 Limitations 

Through the development of the tracking tool, some limitations to the tracking were noted, these include: 

 Routing is a prediction, but not a true representation of the trips. With more information this may be less 
of a prediction for a percentage of the vehicles. 

 The accuracy statistic was not able to be calculated for the low loader and load platforms as they did not 
have IAP installed. 

 IAP validation was only able to be undertaken at a single site, so the accuracy was only able to be 
calculated at Nudgee. With IAP information at more sites, this may allow for a deeper understanding and 
improve the nuance of the tracking. 

 The more unique the configuration of a vehicle, the more confidence that the vehicle being tracked is the 
same vehicle. 

In addition to the tracking of the vehicle, there are limitations in regard to the tracking tool, these include: 

 The tool does not dynamically update, so is reliant on a static database and connections to report on 
historical events. 

 The tool is limited by the features of PowerBI, which means that the expansion of the tool is limited. This 
also means that functions cannot be created and embedded into PowerBI. 

5.3.7 Summary 

Tracking based on axle spacing and vehicle configuration data has been demonstrated to be effective when 
the configuration is sufficiently unique. When the estimated accuracy of the algorithm is combined with the 
total volume of tracked movements it is expected that 15% of low loader and load platforms were accurately 
tracked using WiM/classifier data. This is a significant volume of vehicle movements. Further improvements 
to the algorithm should be considered which would lead to a larger volume of accurately tracked movements.  

One particularly useful benefit of vehicle tracking using this methodology is individual vehicle weight 
inference. When a vehicle crosses a classifier site, the resulting record does not contain mass data. Using a 
tracking methodology, the vehicle’s weight can be inferred from either up or downstream WiM sites which are 
part of the trip. The value of classifier data is enhanced through extrapolation of WiM measurements, but in 
contrast to whole site extrapolation weight tracking inference can provide insight into specific vehicles of 
interest.  

From a bridge asset management perspective, tracking the largest of these vehicles through the network 
provides a history of access data to inform bridge capacity assessments and enhance the credibility of 
decisions about access limits for routes. 

Integrating ANPR technologies into the tracking and increasing the accuracy of the axle spacing data may 
increase the reliability and number of vehicles of interest that could be tracked through the network. 
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6. Future Considerations 

NACOE S26 found that TMR would benefit from better data more often. This section outlines the possible 
enhancements to WiM, with a focus on the bridge perspective, which may be implemented with data fusion 
or added technology. Possible improvements are provided in the following sub-sections. 

6.1 Axle Load Data 

Ensuring quality axle load data over time lies at the core of the value proposition for WiM (Figure 6.1). 
Possible strategies for improving the axle load data measurements include valuing quality axle data highly 
and selecting WiM systems and sensors to provide value over the life of the sensors/system including 
regular road surface maintenance. 

Figure 6.1: WiM monthly semitrailer 123 configuration steer axle mass statistics 

6.2 Axle Spacing 

The spacing of the axles for heavy vehicles can act as a signature for the larger vehicles on the network and 
can help differentiate vehicle types, identify routes taken, identify vehicles that may be suitable for live 
calibration of WiM sites, and to monitor compliance (Figure 6.2). Some possible strategies for improving the 
accuracy of axle spacing and speed data include quantifying the variability in axle spacing through case 
studies, investigating the causes of variability in recording of the axle spacing and implementing a continual 
improvement program, possibly in conjunction with suppliers of WiM and classifier systems. 
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Figure 6.2: Axle mass configuration for cranes with 6 or more axles 

 

6.3 Coverage of Wide Vehicles 

Pavement WiM and classifiers collect data for vehicles travelling in a lane, however wide vehicles such as 
low loaders and load platforms have a footprint such that it tends to straddle lanes or operate partly on the 
road shoulder. This means that while the detectors may collect data it may be nonsensical in terms of mass 
or configuration, leading to an underestimation of the actual loads on the road assets. When vehicles change 
lanes at WiM sites similar nonsensical inputs are provided. Where vehicles are operating partly on the road 
shoulder the mass operating on the shoulder is not recorded due to no sensors being in the shoulder 
(Figure 6.3). While vehicles such as prime movers may not straddle lanes, it is noted that their trailers may 
do.  

The correct understanding of mass and configuration of these vehicles is critical as these are the largest 
vehicles on the network and they represent the largest risks to bridges. 

Figure 6.3: The widest vehicles often run in the edge lane with tyres on the shoulder beyond the edge of the 
WiM sensors 

 

Possible strategies for improving the coverage of wide vehicles include: 

 upgrading algorithms to stitch together multi-lane WiM data (as was done for this project) 
 extending the sensors to include the shoulder 
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 consider the use of bridge WiM, where the whole bridge span is the sensor such that data is collected for 
all drivelines, even on the shoulder. 

6.4 Ground Contact Width & Permits 

Lateral distribution of axle loads on permit vehicles such as low loaders and load platforms varies with the 
width of the ground contact. As ground contact width is currently not measured it is not possible to determine 
the lateral load distribution on structural components and hence acceptable loads or if overloading of a 
structure is occurring. In addition, the acceptable load per axle depends on the ground contact width and the 
number of wheels per axle. 

Possible strategies to determine ground contact width and identify permit vehicles are to: 

 investigate technologies such as permit vehicle details which are electronically readable, to enable 
measured data to be tied to permits and used for management of the network 

 trial technologies for measuring ground contact width, such as TIRTL, Lidar, laser and in-pavement 
sensors 

 adding sensors to measure ground contact width, the driveline of the truck and the number of tyres per 
axle. 

6.5 Integration of ANPR Data with WiM  

ANPR is important when using WiM as it provides confirmation that the vehicle type and configuration are as 
recorded in the WiM records. Possible strategies for improving the integration of ANPR with WiM data 
include: 

 refining the integration of ANPR with WiM on multi-lane freeways 
 trialling the use of emerging solar powered ANPR systems with 4G connectivity with CCTV capability, to 

facilitate the capture of number plates, CCTV and the ability to view still images of selected vehicles and 
their loading 

 install front and rear facing systems where possible as well as ensuring that an angled view of the 
vehicle can be achieved, to allow for an identification of all the components of the configuration 

 continue the development of the integration of ANPR with WiM in association with monitoring projects. 

6.6 Geographical Coverage of WiM 

There are currently some portions of the road network where there are no WiMs or classifier stations which 
transmit data back to the central data repository. These black spots in WiM or classifier stations include: 

 urban freeway vehicle sensing technologies that do not provide 'axle spacing signatures' (e.g. loops) 
 highways where no WiM stations have been installed. 

Possible strategies for extending the geographical coverage of classifiers and WiM include updating 
classifiers to report data via telemetry, installing WiM sites at critical locations and progressing the concepts 
of virtual WiM (vWiM) by integrating WiM and classifier data via 'axle spacing signatures' and or ANPR data 
to extrapolate WiM data to other locations on the network. 

6.7 Bridge WiM 

Bridge based WiM systems are not commonly used. It has the potential advantage of being more stable over 
time as less pavement maintenance is required. Advantages also include that the sensors are generally not 
removed when pavement upgrades are undertaken. This ensures that all heavy vehicles are recorded. 
Additionally, the system and sensors are relocatable. 
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6.8 On-Board Mass (OBM) Measurement 

On-board mass (OBM) measurement has been emerging for decades in parallel with WiM and is now 
becoming more common in Queensland. Data is currently available to TMR for a limited subset of freight 
vehicles. As the heavy vehicle fleet is becoming increasingly sophisticated, there will likely be an increasing 
take-up of these technologies by transport companies. 

Possible strategies relating to OBM include: 

 Cease the collection of WiM and classifier data and rely on OBM and related technologies. From a bridge 
perspective this only works if all vehicles are fitted with OBM and all axle spacing and axle loads are 
reported. 

 Utilise the OBM data to validate WiM station calibrations and support TMRs calibration of OBM data. 
 Continue to use WiM and classifier data to ensure coverage of all vehicles. 
 Merge the WiM, classifier and OBM datasets. 

6.9 Bridge Response Monitoring 

Bridge response monitoring provides both the performance data for components as well as the load model 
data for the traffic stream. The bridge response monitoring systems are best utilised when integrated with 
other datasets such as AVIS, WiM, classifier, OBM, permit and authority to operate data. 

Possible strategies for bridge response monitoring include continuing to utilise, to: 

 inform structural behaviour 
 identify vehicles accessing the network and their effects on structures 
 support due diligence 
 refine assessment load models to support risk and asset management 
 safely extend lives of bridges, inform rehabilitation and improve utilisation of the bridge asset. 

6.10 Uncommon Heavy Vehicle Tracking 

Potential enhancements to the tracking tool include: 

 integration of the heavy vehicle network into the matching algorithm 
 mapping of potential heavy vehicle trips undertaken by vehicles 
 integration with IAP to validate and improve tracking 
 exploring methods to aggregate routing data of all vehicles which cross the same bridge. 

From a bridge asset management perspective, tracking the largest of these vehicles through the network 
provides a history of access data to inform bridge capacity assessments and enhance the credibility of 
decisions about access limits for routes. 
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7. Conclusions and Recommendations 

The overall aim of the project was to review TMR’s WiM systems and to identify opportunities for 
improvement with an emphasis on technologies and systems that could improve input to the credible 
risk-informed management of the bridge stock.  

Benchmarking TMR’s WiM systems nationally concluded that the systems are mature and would benefit from 
the generation of more accurate WiM data with less down time while reliably recording information on Class 
1 heavy vehicles such as cranes, low loaders and load platforms. Approaches that may facilitate this 
outcome include: 

 installing WiM stations in pavements with slow rates of deterioration to improve data quality over the life 
of the WiM station 

 measuring ground contact width to improve the understanding of the loads and compliance levels of the 
Class 1 heavy vehicles  

 improving data analytics to extract more knowledge from available data 
 monitoring and continually improving the data quality. 

This project’s recommendations complement similar findings from NACOE R103, which explored the concept 
and development of a vWiM model focused on providing network-wide information. In that project a vWiM 
framework was proposed that comprised of three modules to combine the data types of interest. All the 
modules apply network allocation and extrapolation techniques to build the vWiM network-wide. Module 1 
proposed to use data from WiM sites and classifiers. Module 2 was based on combining with ANPR data 
sources and Module 3 proposed to use truck telematics (GPS and OBM) data. 

7.1 Conclusions 

The project demonstrated that there are increasing opportunities for WiM and related technologies to support 
evidence-based decisions by TMR. Internal engagement, national and international reviews also found that 
the value proposition for WiM data is not well articulated because the focus is on collecting data to inform 
compliance rates rather than the optimal management of the road and bridge network and the heavy 
vehicles that provide transport services for the community. 

A draft Strategic Asset Management Plan (SAMP) for TMR WiM was developed. The draft SAMP proposed a 
program of continual improvement and investment in data quality, accessibility and the application of WiM 
and related datasets over 10 years to respond to identified stakeholder needs. 

The vehicles posing the greatest risk to bridges across the network were investigated to understand their 
characteristics and enable them to be tracked through the network. The applications of WiM expand with 
increasing data quality and data coverage.  

While it is possible to extract value from imperfect data, it is also the case that some applications require 
improved quality and reliability of data. It was concluded that there are many means for improving data 
quality, including updating specifications for WiM and classifiers, continuous improvement of data 
post-processing with a network-level focus, and live calibration of existing WiM sites using vehicles of known 
and consistent mass, identified in the traffic stream. 

Data coverage can be improved through strategic maintenance of existing WiM systems, identifying and 
addressing data black spots, using the WiM data extrapolation methods developed as part of this project to 
provide virtual WiM data at classifier sites, combining complementary datasets, incorporating the connection 
between WiM and other heavy vehicle data sources, including bridge monitoring, ANPR, IAP, ATO, OBM, 
and classifier data. The more independent complementary data sources that can be effectively combined, 
the more opportunities that will arise. 
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7.2 Recommendations 

It is recommended TMR adopt the vWiM concepts of integrating multiple datasets and supporting a program 
of continual improvement. The program should target the quality, coverage, accessibility, and linking of 
datasets. Further development of the engineering and analytics to translate the data into information and 
knowledge are also necessary to support informed decisions that benefit the Queensland community. 
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Appendix A Definitions and Terminology 

The key terms, acronyms and mathematical symbols used throughout the report are provided to facilitate 
understanding of the outcomes for a range of stakeholders. Where applicable, definitions relating to heavy 
vehicles are taken from the National Heavy Vehicle Regulator (2016a). The terms, acronyms and 
mathematical symbols defined in this appendix are used throughout this report and its associated 
appendices. 

A.1 Key Terms 

The following are key terms and their meaning in the context of this report. 

Term Definition 

123 vehicle A vehicle (most commonly a semi-trailer) comprising a single steer axle, tandem drive axle group 
and tri-axle trailer group with configuration '123'. 

‘A’ distance The length between the centreline of the last axle of the prime mover and the first axle of the 
trailer. 

 

Source: HVNL Multi-State Class 1 Load Carrying Vehicles Dimension Exemption Notice 2016 
Amendment Notice 2019 (No. 1). 

For the purpose of the project the 'A' distance for combinations with a single or tandem dolly in 
combination was the distance between the last axle of the dolly and the first axle of the low 
loader or load platform trailer: 

 

Source: HVNL Multi-State Class 1 Load Carrying Vehicles Dimension Exemption Notice 2016 
Amendment Notice 2019 (No. 1). 

Austroads class 6+ A vehicle with ≥ 3 axle groups and ≥ 3 axles.  

Refer Figure A.1 for more details. 

Axle One or more shafts positioned in a line across a vehicle on which one or more wheels which are 
intended to support the vehicle turn. 

Source: NHVR (2016a). 

Axle group An axle or group of axles where each axle in the group is ≤ 2.1 m from the adjacent axle in the 
same group. 

Note: This is based on the implemented logic in WiM and classifiers which is based on Austroads 
vehicle classes. 

Axle spacing The spacing between two axles of a vehicle. 

For classifier and WiM records, the spacing is indexed by the number of spaces between axles on 
the vehicle. 

For example: 

Axle space 1 would represent the distance between the first axle of the vehicle to the second axle; 
whereas axle space 2 would be the distance from the second axle to the third. 
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Term Definition 

Boom dolly A device for distributing mass connected behind a heavy mobile crane in travel mode which 
supports part of the crane boom. 

 

Source: NHVR (2019). 

Calibration concerns (WiM) WiM data from a site during a period of time where, based upon a statistical analysis of the 
123 vehicle configuration steer axle mass, the data has been assessed as likely being out of 
calibration. 

Class 1 heavy vehicle A vehicle classed by Heavy Vehicle National Law as being a class 1 vehicle. These include 
Special Purpose Vehicles (SPV), Oversize Overmass Vehicles (OSOM) and Agricultural Vehicles. 

Refer to Figure A.2 for more details. 

Class A confidence data (WiM) When referring to a WiM site, indicates that the site was assessed as having confident data 
according to the class A confidence 123 vehicle configuration steer axle mass thresholds during 
the specified period of time.  

When referring to a vehicle of interest record, indicates that the record came from a period of time 
at a site that was deemed to be confident based upon the class A confidence 123 vehicle 
configuration steer axle mass limits, and that the records steer axle mass was within the class A 
confidence vehicle of interest steer axle mass limit (if a low loader or load platform). 

Class B confidence data (WiM) When referring to a WiM site, indicates that the site was assessed as having confident data 
according to the class B confidence 123 vehicle configuration steer axle mass thresholds during 
the specified period of time.  

When referring to a vehicle of interest record, indicates that the record came from a period of time 
at a site that was deemed to be confident based upon the class B confidence 123 vehicle 
configuration steer axle mass limits, and that the records steer axle mass was within the class B 
confidence vehicle of interest steer axle mass limit (if a low loader or load platform). 

Class C confidence data (WiM) When referring to a WiM site, indicates that the site was assessed as having confident data 
according to the class C confidence 123 vehicle configuration steer axle mass thresholds during 
the specified period of time.  

When referring to a vehicle of interest record, indicates that the record came from a period of time 
at a site that was deemed to be confident based upon the class C confidence 123 vehicle 
configuration steer axle mass limits, and that the records steer axle mass was within the class C 
confidence vehicle of interest steer axle mass limit (if a low loader or load platform). 

Classification The type of vehicle which is identified (e.g. truck, crane, truck and dog, low loader, load platform, 
B-double, etc.) based on a vehicle classification scheme, e.g. the Austroads 1994 12-bin vehicle 
classification scheme (Austroads 2000), HVNL classification scheme. 

Classifier data In this report, the term 'classifier data' refers to the classifier portion of the data from both classifier 
and WiM sites. 

Classifier footprint  OR 

Axle-spacing footprint  OR  

Axle spacing signature 

The configuration and axle spacings from a specific WiM or classifier record. Often unique and 
consistent (within axle spacing measurement tolerances) for rare vehicles including many Class 1 
heavy vehicles such as load platforms and heavy mobile cranes. 

Configuration 
(of a vehicle) 

A string representing the number of axles in each successive axle group of a vehicle 
combination.  

The numbers within the configuration have the following meanings: 

 1 = a single axle (≥ 2.1 m from the nearest adjacent axle) 

 2 = tandem-axle group 

 3 = tri-axle group 

 4 = quad-axle group  

 5 = quin-axle group 

Groups represented by numbers ≥ 6 are most commonly load platform trailers: 

 6 = six-axle group  

 7 = seven-axle group 

 8 = eight-axle group 

 9 = nine-axle group 
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Term Definition 

 0 = ten-axle group 

 A = eleven-axle group 

 B = twelve-axle group 

 C = thirteen-axle group (and so on for higher letters) 

A vehicle comprising a prime mover with a tandem dolly towing a ten-axle load platform trailer 
would have the configuration '1220'. The arrangement of the axles may be: 

 O     OO  OO      OOOOOOOOOO 

The front of the vehicle is always denoted by the first number in the configuration. The vehicle 
above, for example, is travelling to the left. 

Similarly, a '123' may be a semitrailer with the following arrangement of axles: 

 O    OO           OOO 

NOTE: Alphanumeric identifiers for axles were revised after this report such that ten-axle group 
changed from 0 to A, the proceeding axle groups identifiers has changed, such that B represents 
eleven-axle group, etc. 

Closed quad A quad-axle group with the following geometry: 

 

In configurations, this axle group is represented by a '4'. 

Closed quin A quin-axle group with the following geometry: 

 

In configurations, this axle group is represented by a '5'. 

Combination A group of vehicles consisting of a motor vehicle such as a prime mover or rigid truck towing one 
or more other vehicle units such as a semi-trailer or trailer. 

Source: NHVR (2016a). 

Confident (WiM) WiM data from a site and during a period of time where, based upon a statistical analysis of the 
123 vehicle configuration steer axle mass, the data has been assessed as being a confident 
representation of the expected traffic.  

Cumulative distribution/cumulative 
probability 

The cumulative probability or distribution is the probability that an observation will be less than or 
equal to a given number.  

For example, a cumulative probability of 60% that a steer axle mass is 6.0 t, means that 60% of 
the vehicles in the dataset have a steer axle mass which is less than or equal to 6.0 tonne. 

Data filtering Selecting subsets of data based upon key parameters in the data, to support objectives of specific 
investigations. 

Data processing Modification of data from its original form to support the needs of specific investigations and/or 
allow implementation into visualisations. 

Data analysis Detailed examinations performed on raw, processed and or filtered data to identify key trends in 
the records and determine the findings of this project and associated investigations. 

Data visualisation The presentation of data in visual or tabulated form to: 

  communicate ideas and insights and make information easier to understand and retain 

  identify trends and outliers 

  present the results of data analytics 

  guide the data analytics. 
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Term Definition 

For example, dashboards were developed to assist in visualisation and manual exploration of the 
large datasets, allowing the user to pose and answer questions related to the data.    

Dog trailer A trailer that has two axle groups with the front axle group steered by connection to the towing 
vehicle. 
 
In the project, only 4-axle dog trailers (sometimes called 'super dogs') are considered in an 
attempt to distinguish between these trailers and spread quad trailer groups from low loaders. 

Dolly A device for distributing mass that: 

a. is usually coupled between a prime mover and a low loader trailer or load platform trailer; 

b. consists of a rigid frame of a gooseneck shape 

c. does not directly carry any load 

d. is equipped with 1 or more axles, a kingpin and a fifth wheel coupling.  

Source: HVNL Heavy Vehicle (Mass, Dimension and Loading) National Regulation. 

For the purposes of the project, (a) has been updated to include the italicised text. 

Dynamic mass The observed mass (applied force divided by acceleration due to gravity) of the moving vehicle 
(rather than the static mass of the vehicle). 

May refer to the observed mass of an axle, axle group, vehicle or combination. 

Expected traffic Representation of the traffic which is likely to be observed at a location over a period of time, 
based upon observed data. Does not account for outliers. 

Fifth wheel coupling A device (other than an upper rotating element and a kingpin) used with a prime mover, semi-
trailer or converter dolly to permit quick coupling and uncoupling; and provide for articulation. 

Source: NHVR (2016a). 

Filtered data A subset of data (usually processed data) obtained by data filtering. 

Typically, this is the data used as input to data analysis which is aimed at testing hypotheses or 
answering questions generated through the various investigations of this project. 

Full dataset All of the supplied data without any filters. 

Gooseneck A rigid connection frame between a load platform, low loader or dolly which is cranked by 
necessity to make the connection with the part of the combination which is in front (a prime 
mover or dolly). 

 

Source: HVNL Multi-State Class 1 Load Carrying Vehicles Dimension Exemption Notice 2016 
Amendment Notice 2019 (No. 1). 

Ground contact width In relation to an axle, the distance between the outermost point of ground contact of the outside 
tyres on each end of the axle. 

In relation to an axle group, the greatest ground contact width of all the axles in the group. 

 

Source: NHVR (2016a). 

Heavy mobile cranes Mobile cranes (also commonly referred to as 'all terrain cranes') with more than 4 axles. 

Investigation A part of this project. 

Logger A computer on site at a WiM or classifier which receives and processes raw sensor data and 
subsequently sends raw data for collation in TMR's database. 

Load platform For the purposes of this project, this is any vehicle combination which includes a load platform 
trailer.  
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Term Definition 

Load platform trailer A trailer specifically designed for the movement of large loads with the trailer having all of the 
following features: 

 at least five rows of axles 

 a minimum of 1.6 m longitudinal spacing between axle rows 

 at least 8 tyres per axle row 

 all axle rows are steerable 

 may be constructed of multiple platform modules. 

Source: HVNL Multi-State Class 1 Load Carrying Vehicles Dimension Exemption Notice 2016 
Amendment Notice 2019 (No. 1). 

For the purposes of this project a load platform trailer is defined as a trailer consisting of one or 
more modules having the following features. 

 ≥ 5 equally spaced axles 
 ≥ 1.6 m longitudinal spacing between axles 

 

In configurations this axle group may be represented by '5','6','7',…,'A','B','C' depending on the 
number of axles, or if the axle spacings are ≥ 2.1 m, would be denoted by a series of '11111…'. 

Low loader For the purposes of this project, a low loader is considered to comprise a tandem-drive prime 
mover with a low loader trailer with or without a single or tandem dolly.  

Low loader trailer A semi-trailer by with a loading deck no more than 1.2 m above the ground. 

Source: HVNL Amendment Notice 2019 No 1. 

For the purposes of this project a low loader trailer includes spread tri, closed quad, spread 
quad or closed quin-axle group trailer. 

Prime mover A motor vehicle designed to tow a semitrailer. 

Typically comprising a steer (or twinsteer) axle group and a tandem drive axle group. 

Source: NHVR (2016a). 

Probability distribution A probability distribution presents the probability of an observation having a specific value or a 
value in a specific range.  

For example, a probability of 15% that a steer axle mass is between 6.0 t and 6.5 t, means that 
15% of the vehicles have steer axle mass in this range. 

Processed data Data obtained as the result of data processing. 

Querying Identifying sub-datasets relevant to this project from TMR WiM and classifier databases. 

Raw data Data which has been transferred directly from the weigh-in-motion and classifier sites to TMR's 
database without any post-processing by TMR.  

It has been processed by on-site data loggers each with their own classification algorithms 
developed by various suppliers to MRTS251 and MRTS203 technical specifications. 

This is different to raw sensor data which is data from the actual sensors and is independent of 
classification algorithms. 

Raw sensor data Signals produced by the various sensors that make up weigh-in-motion and classifier systems 
including from loops, tubes, piezoelectric and strain sensors.  

This is the data which is interpreted by the proprietary loggers onsite using bespoke logic 
developed by the supplier.  

Semi-trailer 
(axle group type) 

A trailer that has 1 axle group towards the rear and a way of attaching to a prime mover that 
results in some of the load being imposed on the prime mover. 

Source:  NHVR (2016a). 

Semi-trailer 
(vehicle type) 

A combination comprising a prime mover and a semi-trailer. 
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Term Definition 

Spread tri 
(axle group type) 

A tri-axle group complying with one of the following three sets of geometries: 

 

In configurations the above would be denoted '3', '21' and '12' respectively. 

Spread quad 
(axle group type) 

A quad-axle group with the following geometry: 

 

In configurations the above would be denoted '22'. 

Site Location of a WiM or classifier. 

Static mass The actual mass of a vehicle (as opposed to the dynamic mass) as would be determined by the 
standing vehicle on an accurate set of scales. 

May refer to the actual mass of an axle, axle group, vehicle or combination. 

Steer axle The front steerable axle used to steer the vehicle. 

Project This NACOE research project. 

Supplied data Data supplied to this project.  

Tandem drive 
(axle group type) 

A drive axle group with two axles in a prime mover. 

Target data Data of concern to an investigation which is extracted from the supplied data through logic and 
rules.  

Tolerance  
(axle spacing) 

An amount by which any dimension can deviate from the nominal dimensions or dimension limits 
and still be classified as a particular axle group type, trailer or vehicle type. 

 
Unless noted otherwise, a tolerance of ± 200 mm has been considered. 

Truck and dog A combination consisting of a rigid truck with 3 or 4 axles towing a dog trailer with 3 or 4 axles. 

 

Source: NHVR (2019). 

Source: HVNL National Class 3 Truck and Dog Trailer Mass Exemption Notice 2018 (No.2). 

For the purpose of this project the focus has been on truck and dogs which have 4-axle dog 
trailers. 

Twinsteer  
(axle group type) 

A group of 2 axles connected to the same steering mechanism on a motor vehicle, the axle 
spacing of at least 1 m but not more than 2 m. 

Unconfident (WiM) WiM data from a site and during a period of time where, based upon a statistical analysis of the 
123 vehicle configuration steer axle mass, the data has been assessed as not being a confident 
representation of the expected network traffic.  

Vehicles of interest Low loaders, load platforms and heavy mobile cranes. 
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Term Definition 

Vehicle type The common language description of the vehicle (e.g. truck, crane, truck and dog, low loader, load 
platform, B-double, etc.), closely aligned to a vehicle classification scheme. 

Virtual Weigh in Motion (vWiM) Virtual Weigh-in-Motion (vWiM) is an emerging concept targeted at providing enhanced evidence 
about the heavy vehicles that access the road network to support access and planning decisions 
by (i) providing ‘virtual’ WiM data and related information at locations without a WiM station, and 
(ii) enhancing the credibility and application of heavy vehicle data by merging data subsets from 
different technologies to provide a richer picture of heavy vehicle journeys and vehicle 
characteristics. 

 

 

Figure A.1: Austroads vehicle classifications with Austroads class 6+ vehicles identified 

 

Source: Austroads (2000). 
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Figure A.2: HVNL vehicle classifications with class 1 vehicles identified 

  

Source: NHVR (2019). 
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A.2 Acronyms 

Acronym Definition 

ANPR Automatic number plate recognition 

ARRB Australian Road Research Board 

ATO Authority to operate 

CDF Cumulative distribution function 

GAF Gateway Arterial Flyover 

GCM Gross combination mass (applies to combinations of vehicles and trailers but often, 
and in this report, used interchangeably with GVM) 

GCW Ground contact width 

GPS Global Positioning System 

GVM Gross vehicle mass (applies to heavy vehicles without trailers but often, and in this 
report, used interchangeably with GCM) 

HVNL Heavy Vehicle National Laws 

IAP Intelligent Access Program  

The IAP is a national program developed in partnership with all Australian road 
agencies. It allows participating operators access, or improved access, to the road 
network in return for IAP monitoring and compliance with access conditions 
imposed by road agencies or road managers. 

Heavy vehicles are monitored using telematics services with an in-vehicle unit 
(IVU). The IVU is supplied and operated by an IAP service provider. IVUs use 
satellite tracking and wireless communication technology to remotely monitor 
where, when and how heavy vehicles are being operated on the road network.   

Source: NHVR (2021). 

NACOE National Asset Centre of Excellence 

OBM On-board mass monitoring 

OSOM Over size and over mass 

PDF Probability distribution function 

TETS Traffic Engineering, Technology and Systems 

TMR Queensland Department of Transport and Main Roads 

vWiM Virtual weigh in motion 

WiM Weigh in motion 

A.3  Mathematical Symbols 

Mathematical symbol Definition 

> Greater than 

≥ Greater than or equal to 

< Less than 

≤ Less than or equal to 

± Plus or minus 

= Equal to 

∑ Sum of 

√ Square root 
2 Squared 

max(x) Maximum of dataset x 

|(x)| Absolute value of dataset x 

F(x) Cumulative distribution of dataset x 
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Appendix B Project S26 Dataset 

B.1 Context 

TMR collects traffic data for a range of purposes, including understanding the heavy vehicle usage of the 
network. Several data collection technologies are used by TMR including WiM, classifiers, ANPR cameras 
and permanent weighbridges. TMR's data collection network has developed in tandem with technological 
improvements, with much of their data centrally stored and managed. Access to this data is tightly controlled 
for a range of reasons, including the privacy of road users, with TMR carefully considering the data usage 
before providing access. Activities associated with the TMR Gateway Arterial Flyover (GAF) project – 
focused specifically on bridge protection – led to modifications to data processing algorithms which exposed 
a new dataset of oversize overmass (OSOM) vehicles enabling the systematic analysis and understanding of 
these vehicles which had not been possible historically. The project was provided access to the improved 
dataset for the purposes of its investigations into vWiM for the vehicles of interest. 

B.2 Objective 

The objective of this section is to define the datasets used in this project to inform the investigation of the 
vehicles of interest.  

B.3 Methodology 

Using the updated WiM algorithm developed during the GAF project, approximately 1 year of raw WiM data 
was analysed for a limited number of sites. 

B.4 Data Review 

B.4.1 Data Source (WiM and Classifier) 

The project sourced input from both WiM and classifier data collected over the period from 01/01/19 to 
09/02/2020. Across the Queensland network TMR has 60 WiM installations and 126 networked classifier 
installations. For the purposes of this project data was acquired from: 

 23 WiM installations 

 97 networked classifier installations. 

The locations of the WiM and classifiers are indicated on Figure B.1. Data from this asset base is continually 
uploaded into a TMR database, which formed a key input to the project.  
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TMR WiM stations are comprised of a combination of Culway WiM stations and piezometer technologies, 
and are classified as Class A, Class B and Class C based on their accuracy as shown in Table B.1. An 
additional category, Class D, defines WiM stations which fall outside of the Class A, B or C accuracy levels. 
The project only utilised data from Class C or higher WiM sites, to ensure the accuracy of its derived 
analyses. The accuracy class of each WiM site used in this project is shown in Table B.2. Accuracy 
specifications for classifiers, as specified in MRTS251, are shown in Table B.3, with details on each classifier 
used in the project in Table B.4.  

Table B.1: TMR WiM accuracy types 

Function 

Accuracy Tolerance 

Class A Class B Class C 

Single axles ± 15% ± 20% ± 30% 

Axle groups ± 10% ± 15% ± 20% 

Gross vehicle mass ± 6% ± 10% ± 15% 

Speed ± 2 km/h 

Axle spacing ± 15 mm 

Source: MRTS203 (TMR 2020b). 

 

 

16 The Kuranda Rainforest Station is identified as a Class C WiM site however, due to issues with data quality, is treated for the 
purposes of the project as a classifier. 

Figure B.1: Locations of TMR WiM and classifier sites used by the project16 
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Table B.2: TMR WiM sites and accuracy 

Location Road name 
Road 

section ID 
Class 6+ 
records 

Vehicles of 
interest Latitude Longitude Device Accuracy class 

WiM Site Barcaldine Landsborough Highway (Barcaldine – 
Longreach) 

13E 33,190 1,589 −23.6 145.3 Mikros B 

WiM Site Belmont (north) Gateway Motorway (Eight Mile Plains – 
Nudgee) 

N239 1,216,621 17,500 −27.5 153.1 Mikros B 

WiM Site Belmont (south) Gateway Motorway (Eight Mile Plains – 
Nudgee) 

N239 1,207,279 18,705 −27.5 153.1 Mikros B 

WiM Site Boggabilla Newell Hwy – (NSW) - 178,250 2,941 −28.6 150.3 Mikros B 

WiM Site Burpengary Bruce Highway (Brisbane – Gympie) 10A 85,160 1,923 −27.1 153.0 Excel B 

WiM Site Calcium Flinders Highway (Townsville – Charters 
Towers) 

14A 20,956 647 −19.6 146.8 Culway B 

WiM Site Capella Gregory Highway (Emerald – Clermont) 27B 27,879 820 −23.1 148.0 Culway B 

WiM Site Cloncurry Barkly Highway (Cloncurry – Mt Isa) 15A 55,153 1,087 −20.7 140.4 Culway B 

WiM Site Freestone Cunningham Highway (Ipswich – Warwick) 17B 286,499 1,979 −28.1 152.1 Excel B 

WiM Site Gatton Warrego Highway (Ipswich – Toowoomba) 18A 587,346 8,963 −27.5 152.3 Mikros/ 
Culway 

B 

WiM Site Hemmant Port of Brisbane Motorway U27 655,853 8,582 −27.4 153.1 HI-TRAC B 

WiM Site Hotham Ck southbound Pacific Highway (Pacific Motorway) 12A 34,584 907 −27.8 153.3 Mikros B 

WiM Site Lytton Port of Brisbane Motorway U27 242,289 3,425 −27.4 153.2 HI-TRAC B 

WiM Site Middle Creek Landsborough Highway (Kynuna – 
Cloncurry) 

13H 2,003 32 −20.9 140.9 Culway B 

WiM Site Mt Isa Barkly Highway (Mt Isa – Camooweal) 15B 30,504 751 −20.6 139.5 Culway B 

WiM Site Narangba Bruce Highway (Brisbane – Gympie) 10A 222,724 4,414 −27.2 153.0 Excel B 

WiM Site Nudgee Gateway Arterial Road (Gateway Motorway – 
north) 

U13C 1,501,235 33,116 −27.3 153.1 Mikros/ 
Excel 

B 

WiM Site Oakey Warrego Highway (Toowoomba – Dalby) 18B 260,264 4,866 −27.4 151.7 Culway B 

WiM Site Oxenford northbound Pacific Highway (Pacific Motorway) 12A 318,857 5,704 −27.9 153.3 Mikros B 

WiM Site Southbrook Gore Highway (Toowoomba-Millmerran) 28A 157,815 1,615 −27.6 151.8 Culway B 

WiM Site Townsville Port Access Road Townsville Port Road 841 91,013 124 −19.3 146.8 Excel B 

WiM Site Tugun Pacific Highway (Pacific Motorway) 12A 444,516 6,050 −28.2 153.5 Culway/ HI-
TRAC 

C 

WiM Site Yandina Bypass Bruce Highway (Brisbane – Gympie) 10A 470,639 7,841 −26.6 153.0 Mikros B 
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Table B.3: TMR classifier accuracy 

Function Accuracy tolerance 

Traffic volume ± 2% 

Traffic classification accuracy > 95% 

Axle spacing Not specified 

Speed Not specified 

Source: MRTS251. 

 

Table B.4: TMR classifier sites 

Location Road name 
Road 

section ID 
Class 6+ 
records 

Vehicles of 
interest Latitude Longitude 

1.77 km north of Kalbar Connection Rd Cunningham Highway (Ipswich – Warwick) 17B 307,326 2,103 −27.9 152.6 

100 m Mt Cotton/Golden Cockeral Access Mount Cotton Road 111 18,516 575 −27.6 153.2 

10A – 2.13 km north of Johnstone Rd Int Bruce Highway (Brisbane – Gympie) 10A 476,605 6,824 −26.9 153.0 

10A – 500 m north of Diddillibah Rd O'Pass Bruce Highway (Brisbane – Gympie) 10A 225,748 3,596 −26.7 153.0 

10A – 500 m south of Old Bruce Highway Int Bruce Highway (Brisbane – Gympie) 10A 495,526 4,324 −26.4 152.9 

10A – 650 m south of Parklands Interchange Bruce Highway (Brisbane – Gympie) 10A 547,138 7,384 −26.6 153.0 

10A – 700 m north of Plantation Rd Overpass Bruce Highway (Brisbane – Gympie) 10A 1,199,139 21,097 −27.2 153.0 

10A – 750 m north of Yandina Crk Overpass Bruce Highway (Brisbane – Gympie) 10A 346,182 4,448 −26.5 153.0 

10A – PTC 1 km north of Dohles Rocks Road Bruce Highway (Brisbane – Gympie) 10A 629,710 11,792 −27.3 153.0 

10A – South of Dohles Rocks Road Bruce Highway (Brisbane – Gympie) 10A 302,401 5,821 −27.3 153.0 

10M 1.47 km north-west of Veales Rd Bruce Highway (Townsville – Ingham) 10M 170,583 3,089 −19.2 146.6 

10M 250 m east Mark Reid Dr adj VMS Bruce Highway (Townsville – Ingham) 10M 222,145 4,775 −19.3 146.8 

10M RR4 north of Kalynda Parade Bruce Highway (Townsville – Ingham) 10M 38,068 964 −19.3 146.7 

120 – PTC 70 m east of Saunders St Redcliffe Road 120 78,171 3,647 −27.3 153.0 

121 – PTC 200 m north of Coman Rd Deception Bay Road 121 14,810 593 −27.2 153.0 

121 – PTC 200 m south of Coman Rd Deception Bay Road 121 14,810 593 −27.2 153.0 

122-Near south abut.Houghton Hway brdgePTC Brighton – Redcliffe Road 122 14,498 1,261 −27.3 153.1 

122 – 200 m south of Klinger Rd Brighton – Redcliffe Road 122 1,440 103 −27.2 153.1 

126 – 270 m east of Browns Rd/Volz Rd Caboolture – Bribie Island Road 126 20,888 398 −27.1 153.1 
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Location Road name 
Road 

section ID 
Class 6+ 
records 

Vehicles of 
interest Latitude Longitude 

130 – 150 m east of Crusher Park Dr  Nambour – Bli Bli Road 130 18,136 404 −26.6 153.0 

130 – 350 m east of Cooney Road Nambour – Bli Bli Road 130 25,293 2,272 −26.6 153.0 

133 – 150 m north of Clarkes Rd Maroochydore – Noosa Road 133 6,283 299 −26.6 153.0 

133 – 250 m north of Yandina Coolum Road Maroochydore – Noosa Road 133 2,895 17 −26.5 153.1 

133 – PTC 320 m north of Runway Drive Maroochydore – Noosa Road 133 3,122 227 −26.6 153.1 

134 – 30 m west of Short Street Mooloolaba Road 134 574 22 −26.7 153.1 

136 – 500 m west of Sunshine Motorway Maroochydore Road 136 32,894 882 −26.7 153.1 

140 – 250 m west of Emu Mountain Rd Eumundi – Noosa Road 140 18,053 795 −26.4 153.0 

14C Ch 17.22 – West Hughenden Flinders Highway (Hughenden – Richmond) 14C 226,985 52 −20.9 144.0 

14E Ch 6.33 - 2.7 km west of Int 14E/78A Flinders Highway (Julia Creek – Cloncurry) 14E 17,817 185 −20.7 141.7 

150B – 150 m north of 150A Overpass Sunshine Motorway (Mooloolaba – Peregian) 150B 14,789 236 −26.7 153.1 

150B – 740 m north of Maroochy Blvd Sunshine Motorway (Mooloolaba – Peregian) 150B 51,005 991 −26.7 153.1 

150B – Under Havana Rd Foot Bridge Sunshine Motorway (Mooloolaba – Peregian) 150B 11,675 142 −26.5 153.1 

150B – Under West Coolum Rd Overpass Sunshine Motorway (Mooloolaba – Peregian) 150B 35,778 331 −26.6 153.1 

153 – 200 m north of Waterview Street Nicklin Way 153 5,833 103 −26.7 153.1 

15B Ch 50.9 km (west of Gunpowder Int) Barkly Highway (Mt Isa Camooweal) 15B 418,112 180 −20.4 139.3 

17A west of Church St Ramps Goodna MIM764 Cunningham Highway (Ipswich Motorway) 17A 4,476 52 −27.6 152.9 

17B – 20 m east of Acacia Ave (PS) Loop/Piezo Cunningham Highway (Ipswich – Warwick) 17B 134,599 1,413 −28.2 152.0 

17B – South of Barclay St Overpass PTC Cunningham Highway (Ipswich – Warwick) 17B 348,540 8,854 −27.6 152.8 

180 m West of Macgregor Street Griffith Arterial Road U20 354,036 4,885 −27.6 153.1 

18A-E-CAB-01 (VDC-L01-L08-P01-P04) Warrego Highway (Ipswich – Toowoomba) 18A 318,896 4,739 −27.5 152.1 

18B-W-CAB-17-L04-P02_Lanes 2 & 4 Toowoomba Second Range Crossing (Warrego Highway) 319A 124,452 2,339 −27.5 151.9 

220 m south of Slatyer Av & Thomas Dr Southport – Burleigh Road 103 6,334 104 −28.0 153.4 

280 m north Worongary Creek VCS13 Pacific Highway (Pacific Motorway) 12A 693,425 7,978 −28.1 153.4 

30 m east of Estoril St intersection Griffith Arterial Road U20 244,281 2,682 −27.6 153.1 

319A-C-CAB-04 (VDC-L01-L08-P01-P04) Toowoomba Second Range Crossing (Warrego Highway) 319A 241,543 3,621 −27.5 152.0 

319A-C-CAB-05 (VDC-L01-L08-P01-P04) Toowoomba Second Range Crossing (Warrego Highway) 319A 64,962 748 −27.5 151.9 

319A-C-CAB-11 (VDC-L01-L08-P01-P04) Toowoomba Second Range Crossing (Warrego Highway) 319A 253,869 4,244 −27.5 151.9 

319A-C-CAB-13 (VDC-L01-L08-P01-P04) Toowoomba Second Range Crossing (Warrego Highway) 319A 225,062 3,503 −27.5 151.9 

319B-W-CAB-01 (VDC-L01-L04-P01-P02) Toowoomba Second Range Crossing (Gore Highway) 319B 128,940 1,510 −27.5 151.8 
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Location Road name 
Road 

section ID 
Class 6+ 
records 

Vehicles of 
interest Latitude Longitude 

319B-W-CAB-04 (VDC-L01-L04-P01-P02) Toowoomba Second Range Crossing (Gore Highway) 319B 91,668 1,248 −27.6 151.8 

401 – 150 m south of Kremzow Rd Brisbane – Woodford Road 401 83,574 1,426 −27.3 153.0 

401 – PTC at Terrors Creek Dayboro Brisbane – Woodford Road 401 5,652 743 −27.2 152.8 

40A – 200 m east of Mason Rd D'Aguilar Highway (Caboolture – Kilcoy) 40A 15,339 229 −27.0 152.8 

40A – 200 m west of Smith Rd O'Pass PTC D'Aguilar Highway (Caboolture – Kilcoy) 40A 151,439 3,584 −27.1 152.9 

40A – 2 km west of Kilcoy-Beerwah Road D'Aguilar Highway (Caboolture – Kilcoy) 40A 34,154 640 −26.9 152.7 

42A – 50 m north of Beeston Dr Brisbane Valley Highway (Ipswich-Harlin) 42A 65,009 1,236 −27.5 152.7 

45A (N) @ Kaths Rd/Pirrinuan Malakoff Rd Bruce Highway (Dalby – Kingaroy) 45A 241,543 3,621 −27.0 151.3 

45A (S) @ Pirrinuan Malakoff Rd/Kaths Rd Bruce Highway (Dalby – Kingaroy) 45A 318,896 4,739 −27.0 151.3 

489 – 90 m north of Keil Mountain O'Pass Nambour Connection Road 489 11,881 394 −26.7 153.0 

490 – 500 m south of Big Kart Track Entry Glasshouse Mountains Road 490 27,445 689 −26.8 153.0 

490 – 300 m north of Mooloolah Connection Rd Glasshouse Mountains Road 490 34,824 889 −26.8 153.0 

492 – 50 m East of Blackbutt St Kilcoy – Beerwah Road 492 13,662 243 −26.9 153.0 

500M south of Sandgate Road Gateway Arterial Road (Gateway Motorway – North) U13C 141,266 2,926 −27.3 153.1 

5807 Ch 4.88 km – south of Julia Creek Julia Creek – Kynuna Road 5807 1,580,575 307 −20.7 141.7 

78A Ch 488.064 – 12 km south of Bourketown Wills Dev Road (Julia Creek-Burketown) 78A 974 42 −17.8 139.5 

78A Ch 9.0 – north of Julia Creek Wills Dev Road (Julia Creek-Burketown) 78A 114,689 9 −20.6 141.7 

835 100 m south of Illuta St Garbutt – Upper Ross Road 835 7,503 644 −19.4 146.7 

89A Ch 371.26 – 200 m south of Int 89A/92A Burke Dev Road (Cloncurry – Normanton) 89A 95 0 −17.7 141.0 

89B Ch 7.23 500 m north of Melville Creek Burke Dev Road (Normanton – Dimbulah) 89B 2,599 92 −17.7 141.1 

900 – PTC 200 m south of Keong Road Everton Park – Albany Creek Road 900 40,700 1,117 −27.4 153.0 

Adjacent Apple Tree Ck RA T/dist 62.31 Bruce Highway (Maryborough – Gin Gin) 10C 209,329 2,423 −25.2 152.2 

Adjacent to Jervis St Cunningham Arterial Road (Ipswich Motorway) U16 186,461 2,315 −27.6 152.9 

At Booyal School T/dist 84.855 Bruce Highway (Maryborough – Gin Gin) 10C 270,165 3,676 −25.2 152.0 

At Coles Creek – Bruce Hwy (Motorway) Bruce Highway (Brisbane – Gympie) 10A 45,168 310 −26.4 152.8 

Bruce Hwy 100 m south Knight St Bruce Highway (Rockhampton-St Lawrence) 10F 24,482 416 −23.4 150.5 

Bruce Hwy 40 m south Mountain Ck (Kunwarara) Bruce Highway (Rockhampton-St Lawrence) 10F 72,388 1,160 −22.9 150.1 

Cathedral School Ross River Road 612 4,245 144 −19.3 146.8 

Childers Rail Xing T/dist 56.00 Bruce Highway (Maryborough – Gin Gin) 10C 269,582 2,708 −25.2 152.3 

City Gates to Lagoon Street Bruce Highway (St. Lawrence – Mackay) 10G 208,279 2,887 −21.2 149.2 
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TC-710-4-4-8a 

Location Road name 
Road 

section ID 
Class 6+ 
records 

Vehicles of 
interest Latitude Longitude 

Kuranda Rainforest station Kennedy Highway (Cairns – Mareeba) 32A 37,976 637 −16.8 145.7 

Kybong Ck to Cobb's Gully FC12 Bruce Highway (Brisbane – Gympie) 10A 463,498 3,877 −26.3 152.7 

North of Jensens Road T/dist 9.562 Bruce Highway (Gin Gin – Benaraby) 10D 517 3 −24.9 151.9 

On Ramp to 319-C-CAB-15-L04-P02 Toowoomba Second Range Crossing (Warrego Highway) 319A 31,250 529 −27.5 151.9 

Pac Mway south side Paradise Rd overpass Pacific Highway (Pacific Motorway) 12A 647,984 9,926 −27.6 153.1 

Pine River Bridge Gympie Arterial Road U14 302,401 5,821 −27.3 153.0 

Rd 10A – Between Cooroy Int and Old 10A Bruce Highway (Brisbane – Gympie) 10A 507,630 4,894 −26.4 152.8 

Riawena Griffith Arterial Road U20 413,649 6,062 −27.6 153.0 

Sichter Street – Broad Street Bruce Highway (St. Lawrence – Mackay) 10G 210,718 3,808 −21.4 149.2 

South of Progress Rd on Ipswich Motorway Cunningham Arterial Road (Ipswich Motorway) U16 582,247 10,234 −27.6 152.9 

South of Roadtek Depot Gin Gin T/dist2.012 Bruce Highway (Gin Gin – Benaraby) 10D 56,383 679 −25.0 151.9 

South side Glenorchy Straight T/dist 72.22 Bruce Highway (Gympie – Maryborough) 10B 128,914 1,189 −25.6 152.6 

Strathpine/Gympie Rd/School Entrance Brisbane – Woodford Road 401 83,574 1,426 −27.3 153.0 

U13C 250 m south of Wyampa Road Gateway Arterial Road (Gateway Motorway – North) U13C 744,447 12,743 −27.3 153.0 

U13C Gateway Motorway north Gateway Arterial Road (Gateway Motorway – North) U13C 4,032 37 −27.4 153.1 

U13C north of Barrett St Ped Overpass Gateway Arterial Road (Gateway Motorway – North) U13C 923,038 14,877 −27.3 153.1 

U21 – 20 m north of Cemetery Entrance Nathan Connection Arterial Road U21 19,887 292 −27.6 153.1 

West of Gateway Mwy at Wishart Redland Sub-Arterial Road U91 306,808 4,883 −27.5 153.1 
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B.4.2 Data Characteristics 

The data in a WiM record includes site location, date and time stamp, lane number, configuration, axle group 
masses, GVM, speed and axle spacings. An example of a typical WiM record is graphically illustrated in 
Figure B.2, where the colour on the axle wheel indicates a mass recorded and line thickness represents the 
relative magnitude of the mass for the axle (distributed evenly within the group).  

Classifier records are identical to the WiM records except for the mass data (axle group mass and GVM) as 
illustrated graphically in Figure B.3. 

B.4.3 Data Summary 

The supplied data from TMR databases included WiM and classifier records for all Austroads class 6+ 
vehicles, as summarised in Table B.5. The project used an algorithm to extract the records of low loaders 
and load platforms from the Class 6+ dataset based upon the record’s axle geometry, as described in 
Appendix N of Eskew et al. (2021). The algorithm also included an axle spacing tolerance of ± 0.2 m to allow 
for the measurement accuracy range, per TMR’s procedures based upon observations. Axle masses were 
not included in the selection criteria, as they are only measured at the WiM sites. The low loaders and load 
platforms identified by the project represented approximately 2% of all heavy vehicle records in the 
Austroads class 6+ dataset. 

Figure B.2: Graphical representation of typical WiM record 

 

 

Figure B.3: Graphical representation of typical classifier record 
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Records of heavy mobile cranes (cranes with four or more axles) were extracted from the raw WiM and 
classifier data using a similar algorithm to the one used for the low loads and load platforms, further 
described in Appendix O of Eskew et al. (2021), which identifies the rules used to interrogate the dataset 
based on the vehicle type. Filter criteria were developed for the 83 crane models found in the Intelligent 
Access Program (IAP) crane register using their unique axle spacings based on manufacturers’ 
specifications. It was determined that several 4 axle twin-steer rigid trucks were identified as cranes due to 
similarities in their axle spacing and configurations (models TADANO GT550/E-1 and GT550/E-2, LINKBELT 
HTC86100, GROVE TMS9000E, and KATO NK500, NK550 and SL-700R). These crane models were 
filtered out of the crane dataset to limit the pollution of the results caused by the twin-steer rigid truck 
records. Crane data used in this project is summarised in Table B.6. 

B.4.4 Data Quality  

Issues with raw data 

A review of the data revealed that the vehicle records found at the classifier site 5807 Ch 4.88 km – south of 
Julia Creek contained records which were implausible, configurations which do not exist. The data from this 
site is known within TMR to be of lower quality. The data from this site is excluded in parts of the analysis to 
improve confidence in the results. 

While issues were noted with individual records, most of the records from the remaining sites were deemed 
plausible for the low loader and load platform dataset. The approach used to identify vehicles of interest 
(based on axle spacing alone) may result in some vehicles being identified incorrectly. Further discussion on 
misidentification of vehicles can be found in Section 4.2 and Appendix K 4.2 in Eskew et al (2021).   

Changing configurations 

During the project, it was noted that some models of vehicles within the vehicles of interest have the capacity 
to change their configuration by hydraulically lifting axles. This would change the recorded configuration at 

Table B.5: Summary of low loaders and load platform data 

Parameter Information 

Sites 22 Class B WiM stations 

1 Class C WiM station 

97 classifier stations 

Date range 01/01/19 – 09/02/20 

Austroads class 6+ vehicle data  Total supplied data  27,025,531 records 

Total target data 393,552 low loader and load platform records 
 

Table B.6: Summary of selected (crane) data 

Parameter Information 

WiM sites Belmont (south) 

Belmont (north) 

Nudgee 

Hemmant 

Date range 01/01/19 – 09/02/20 

Total crane data 2,860 crane records 
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the WiM or classifier sites, making identification of the vehicles difficult and causing ambiguity on the impact 
of these vehicles on the roadway. 
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Appendix C SWOT Analysis of vWiM 

A SWOT (Strengths, Weaknesses, Opportunities and Threats) analysis was performed by Eskew et al. (2021) to assess the potential for vWiM for TMR. The results 
are summarised in Figure C.1. 

 

Figure C.1: vWiM SWOT analysis 
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Appendix D Stakeholder Engagement 

D.1 Overview 

A major component in the second year of this project was to engage with TMR internal stakeholders to 
investigate the existing and potential use of WiM data. Through discussions with relevant stakeholders, the 
aim was to determine how WiM is currently used, as well as to explore additional potential uses and how 
those identified uses align with localised business requirements and TMR’s broader organisational objectives 
and policies. 

Analysis of the feedback has been used to identify perceived and actual gaps or deficiencies in the existing 
dataset, and the barriers that prevent more effective and widespread utilisation and application of the data, 
both in terms of functional and locational performance requirements. The feedback has been mapped to the 
desired business and stakeholder outcomes expressed both explicitly and implicitly throughout the 
engagement exercise. A trend map (Figure D.1) was developed to demonstrate the extent to which WiM 
data (and associated technologies) contribute to achieving these desired outcomes both now, using the 
existing available data, and in the future, assuming that the ‘ideal’ dataset identified by stakeholders is 
available. The methodology and findings from the stakeholder engagement are discussed in further detail 
below. 

 

The findings from the stakeholder engagement have been used to document TMR’s current (implicit) 
strategy for WiM and formed an input to the development of the draft Strategic Asset Management Plan 
(SAMP). The methodology for stakeholder engagement included the following: 

 review of existing TMR policy and strategy documentation to confirm the project context and alignment of 
a proposed draft WiM SAMP within the existing strategic framework (Appendix C of Heldt et al. 2019) 

 initial stakeholder engagement to seek input and strategic alignment from the WiM managers within TMR 
(Road Operations) and to identify stakeholders for detailed follow up engagement 

Attribute

WiM Data

+ Post-processing / 
Application

+ Real Time

+ Complementary 
Data

+ Integration with 
other data bases

+ Leverage across 
network

Ideal
No contribution Major contribution

Informed 
Road 

Manager

Managing 
Risk 

(Vulnerable 
Assets)

Current

Stakeholder Outcomes

Compliance
Freight 

Task

Freight 
Productivity 
& Network 

Access

Commodity 
Movement

Investment 
Priorities

Credibility
Evidence 

Based 
Decisions

Optimal 
ROI

Figure D.1: Trend map of stakeholder outcomes 
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 detailed stakeholder engagement to seek to understand the existing and potential uses and values of 
WiM data to their business needs, and to identify the technical data requirements and barriers for 
effective implementation of the currently available data. 

D.2 Initial Stakeholder Meeting with Road Operations 

An initial stakeholder meeting was held with the Acting Manager of Road Operations, who is the manager of 
weigh-in motion (WiM) assets throughout the state. The purpose of this meeting was to present a summary 
of the review of TMR’s strategic documentation (Appendix D and Figure D.2) to demonstrate the proposed 
alignment of the draft WiM SAMP with the existing Road Operations Portfolio Strategy and the Road 
Operations Action Plan, and to seek endorsement from Road Operations for the proposed draft WiM SAMP 
to form an input to these existing strategic documents. 

 

In addition, this meeting was intended to seek advice and confirmation regarding the proposed stakeholder 
engagement methodology, the general questions to be addressed and the specific individuals and functional 
areas within TMR that should be consulted during the detailed follow-up engagement. 

D.2.1 WiM SAMP Alignment 

Road Operations confirmed that the draft WiM SAMP should form an input to the Road Operations Portfolio 
Strategy and the Road Operations Action Plan. The Strategy describes the aspirational view of the road 
network to 2022 and beyond and the existing Action Plan (2016–2018) sets out the specific tactical initiatives 
to be addressed over the two years from 2016. This document was under review at the time of this 
investigation and there may be an opportunity to include the draft WiM SAMP in the next document revision. 

Figure D.2: Core TMR policy/strategy document hierarchy 
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D.2.2 Stakeholder Identification 

It is recognised that WiM data has varied existing and potential uses across TMR, and as such it was critical 
to ensure that development of a WiM data strategy included input from a broad range of users. Discussions 
with Road Operations identified that the broad functional areas that should provide input to development of 
the WiM strategy included: 

 Engineering and Technology – Structures, Pavements and Road Operations 
 Program Delivery and Operations – specifically District Director (Central West) who is the nominated 

Champion for Element 11 (Vehicle Monitoring System), as well as Regional Directors 
 Transport Strategy and Planning – Transport Analysis 
 Portfolio Investment and Programming – Strategic Investment and Asset Management 
 Transport Regulation – Heavy Vehicles Operation and Policy. 

Within these areas, specific individuals were recommended by Road Operations for detailed consultation, 
based on current, previous or potential involvement with WiM data. In addition, throughout the course of the 
detailed stakeholder engagement, additional officers were suggested, who were included in the list of 
potential stakeholders and where possible, were also interviewed. Figure D.3 shows the relative positions of 
these personnel within TMR (highlighted with a red border). Note that this is not a complete organisational 
chart of TMR, but, is intended to show the relationships between the branches and units that were consulted, 
the extent of engagement across TMR and the various levels of management that have contributed to this 
review. Engagement included meetings with officers at various levels including: General Managers/Chief 
Engineer, Executive Directors/Deputy Chief Engineers, District Directors, Directors, Managers, Principal 
Engineers, Project Managers, and Principal & Senior Analysts. 

 
  

Figure D.3: Relative positions of stakeholders engaged across TMR (highlighted with red border) 
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Key TMR context documents are summarised in Figure D.4, along with key stakeholder themes and 
proposed WiM strategy elements. 

Figure D.4: WiM strategy development workflow 

 

D.2.3 Development of Focus Questions for Detailed Stakeholder Engagement 

A series of detailed questions were provided to Road Operations as the suggested basis for the detailed 
stakeholder engagement, including: 

 Why do we collect WiM data? 
 How is WiM data used to make/support decisions? 
 What data/reports are available and how are they used? 
 Who is utilising WiM data? 
 Who could utilise WiM data? 
 What data/reports could be valuable to you? 
 Why don’t you/TMR utilise WiM data more? 
 How would an absence of WiM data affect your business? 
 Could linking WiM data with other databases and data analytics enhance value? 
 What evidence do you require for infrastructure investment decision making? 
 How do you manage risk within a constrained budget? 
 Why is WiM data valuable to you and how is it valued? 
 What would happen with x% more or less investment in WiM? 

Imagine that in 10 years’ time, TMR is operating an evidence-based business. Then: 

 What data would be required? 
 How would it be used? 
 What needs to happen now to get there? 
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After discussion with Road Operations, it was agreed that a concise set of five or six focus questions, a 
collation of the detailed questions stated above, would be preferable, and are as follows: 

1. Imagine that in 10 years’ time TMR is operating an evidence-based business where decisions need to be 
based on traceable data. Assuming no constraints – What HV data is important to your business? What 
do you really want to know and how would you use it? – (‘Ideal’) 

2. What HV data are you using now? How do you use it? (‘Current’) 
3. Is the ‘current’ only a subset of the ‘ideal’? Why? 
4. Would you be prepared to pay for the ‘ideal’ dataset? How much? How could it be funded? 
5. How important is it to your business to move from the ‘current’ to the ‘ideal’ over the next 10 years? 

D.3 Detailed Stakeholder Engagement Methodology 

The detailed stakeholder engagement meetings included a brief overview of the project background and 
Year 1 findings, as well as a discussion outlining the review of TMR’s strategic documentation and the 
proposal to develop a draft WiM SAMP to align with the existing Road Operations Portfolio Strategy and the 
Road Operations Action Plan. This was followed by a brainstorming session to explore the heavy vehicle 
data inputs to the relevant business area, based around the five focus questions summarised in 
Section D.2.3. Each stakeholder was also asked to comment on the range of stakeholders being consulted 
and advise whether they had any additional suggestions. 

D.4 Stakeholder Engagement Findings 

While the focus questions were intended to guide the discussions, in most cases, the discussion was 
allowed to flow freely in order to explore all issues that were relevant to the particular business area. The 
findings from the stakeholder engagement are presented as a summary of the general themes and issues 
that were raised rather than a definitive compilation of answers to the specific focus questions. 

Road Operations provided detailed feedback regarding the available WiM data, and how it is intended to 
support decisions across TMR including: pavement design and maintenance, freight planning studies (to 
understand commodity movements and trends in mass on routes), monitoring of over mass vehicles to assist 
with compliance and analysis of the road network to support design life forecasts.  
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D.4.1 Answers to the Question WHY Do We Need WiM at All? 

D.4.2 Ideal Dataset/Requirements 

Group Subgroup Key response 

Transport Regulation Heavy Vehicle Policy  Classifiers quantify types of vehicles and speed, and are cheap and mobile. WiM gives 
axle spacing and mass as well, ANPR can then identify specific vehicles. 

 OBM only provides data for participating vehicles but WiM will be able to provide data 
for vehicles that we don’t know about. 

 It will also assist with categorising vehicles depending on the weight such as livestock 
vehicles and tankers. 

 WiM data could also help with validating Performance Based Standard (PBS) vehicles. 

Heavy Vehicle 
Operations 

 Use some WiM data now, but coverage and content not adequate. Transport industry 
knows more about our asset usage than we do. 

Portfolio Investment 
and Programming 

Transport Systems 
Asset Management 

 WiM is an enabler, not an asset in its own right which provides a service to the public. 

 WiM provides data to enable us to understand overloading. Need to optimise the use of 
heavy vehicles or WiM data but understand that we are in transition to sourcing data 
from alternative sources. 

Portfolio Management 
Office 

 We have the methodology to use the data but not the data to use. 

 If we have the data and the reliability is good, then data-based decision making is 
possible. 

Transport Strategy and 
Planning 

Transport Analysis  WiM is not currently operational or calibrated. 

 If it was fully operational, some of the possible data required include axle, mass, 
spacing and speed which would be used to generate bending moment, shear and pier 
reactions of a bridge. 

 Statistical variations can feed into live load factors. 

Program Delivery and 
Operations 

Central West District  Reliable WiM data could assist operation of assets and help address known issues. 

Engineering & 
Technology 

Road Operations  WiM data is collected to provide information on the makeup of the heavy vehicle fleet. 

 The information collected is at a vehicle by vehicle level and includes axle weights and 
spacings. 

Pavements Materials & 
Geotechnical 

 WiM data would help to develop performance relationships for rutting and the 
diagnostics would assist with understanding of pavement behaviour. 

 It will also provide a greater understanding of pavement response to actual loading and 
the damage relationships would assist with the determination of potential additional 
capacity. 

Structures  Don’t currently use WiM data, and don’t have established methodologies to do so, 
because it doesn’t inform key parameters. 

Group Subgroup Key response 

Transport 
Regulation 

Heavy Vehicle 
Policy and Heavy 

Vehicle Operations 

 Ideal scenario is operating vehicles across full routes – manage truck routes by reducing need to 
break down vehicles – e.g. issue from Toowoomba to the Port 

 Knowing what vehicles are using a route and whether they comply with the route restrictions 

 Know what the routes are and what they’ve been approved for 

 Understanding which vehicles are interstate and which ones are intrastate 

 Mass of heavy vehicles which helps to categorise the vehicles e.g. live freight, tankers etc. 

 Need to know if it is a regulation vehicle or a permit vehicle 

Portfolio 
Investment and 
Programming 

Transport Systems 
Asset Management 

 Need reliable information and need to communicate that the data is reliable. Also need data 
analytics to go with it. 

 Reliable link between the WiM data and the vehicle class/category/permit class which is 
currently missing 

 A network-wide view by using smaller number of calibrated WiM sites but expand/extrapolate to 
the wider network using vehicle classifiers 
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Group Subgroup Key response 

 Essentially, ideal dataset includes knowing every load, the distance it has travelled and 
origin/destination 

 Demonstrating a hard link between the load and performance 

 Short term goal is to increase the number of reliable WiM systems and achieve integration of 
information and systems 

Portfolio 
Management Office 

 Vehicle classifiers 

 The number of vehicles that are over the limit 

Transport 
Strategy and 

Planning 

Transport Analysis  Major freight routes for planning 

 Where are new commodities/crops being developed? 

 What type of vehicles are used for different commodities? Different commodities, e.g. livestock 
use different vehicle configuration to bulk commodities 

 All data should be real time and has to have human interaction only by necessity. 

 Needs to include push notification 

Program Delivery 
and Operations 

Central West 
District 

 Need to know the growth rate of freight and how the freight task changing over time. If it was 
integrated with the traffic data, it would give a better picture of usage across the network 

 Hard data to back up theories e.g. loads on volumetrically loaded cattle trucks – are they 5% 
over? 10% over? Hard evidence would be useful. 

 The actual growth of the freight task for example every 10 years. This would provide valuable 
inputs to the business case for road projects 

 Integration with other ITS applications would be highly beneficial. e.g. Bruce Highway is 
installing Bluetooth trackers, if WiM data could be integrated with such systems it would provide 
a network-wide view of where the loads are travelling. This could also be integrated with the 
ANPR data or tracking technology. By seeing where the loads are travelling it expands the value 
of a single WiM station to broader sections of the network. 

 Integration with weather data 

 An annual report that goes out to the districts summarising the data, availability and accuracy. 
When people know what information is available, they are more likely to use it 

 Ideal future is having completely integrated real time ITS, traffic counts and heavy load data 

Engineering & 
Technology 

Road Operations  A sustainable network of WiM sites producing reliable and accurate data 

How the ideal data would be used? 
 A fully functional overload surveillance system that assists in altering the behaviour of heavy 

vehicle operators to: 

– minimise heavy vehicle overloading, resulting in maximum road and bridge asset life  

– significantly reduce heavy vehicle related crashes 

Pavements 
Materials & 

Geotechnical 

 Data needs to be reliable and calibrated – errors in load are magnified because in pavement 
design the load is raised to a minimum power of 5 (for asphalt pavements). Inaccuracies in input 
data therefore lead to overly conservative designs. 

 Axle load group types, masses, spacing, number of groups 

 Reliable classification of vehicles 

 Image processing - combined photo/video technology with WiM data 

 Vehicle type/class/identification combined with axle masses and spacing 

 Where is the vehicle travelling – in combination with other technology 

 Linking WiM systems together and to other systems such as ANPR and permit systems – this 
would allow a network overview to be developed 

 Continuous spectrum of group masses 

 Forecast of growth rate 

 Tyre pressures, pressure distribution and ground contact area (currently using an assumed 
value of 750 kPa) 

 Lateral position – damage is magnified when wheel loads are closer to the edge, potential for 
channelisation/wander in autonomous vehicles 

 Frequency – existing relationships assume there is a recovery time between loads, platooning 
and autonomous vehicles may affect this 
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D.4.3 Current Dataset 

Group Subgroup Key response 

 Research – horizontal forces – how can we assess damage caused by horizontal forces – this is 
more relevant for seals than for asphalt 

 Research – consider WiM in different pavement types - the more bound a pavement is, the more 
sensitive it is to overload 

 Research – connect WiM data to weather sensors/moisture monitoring in the pavement 

 Look at whether required data can be sourced from vehicle telematics instead of from WiM  

 It is hard to link failure to a particular cause 

 Needs to be able to cope with line marking changes 

 

Usage of the ideal dataset 

 Develop performance relationships for rutting related to the WiM data 

 Question re autonomous vehicles – potentially more frequent but smaller vehicles 

 Diagnostics would assist with understanding of pavement behaviour 

 Greater understanding of pavement response to actual loading and the damage relationship 
would assist with determination of potential additional capacity. If we understand the damage 
relationship this may facilitate more efficient use 

 Research – design is based on a general mechanistic procedure. It is challenging to develop 
performance relationships for new materials – better data would assist with this 

Structures  A system to detect the mass of the heavy vehicle prior to being driven over a structure which 
alerts the driver to divert in order to avoid the structure being overloaded 

 Ideal dataset, including axle mass spacing which could recommend the driver to drive slower 

 A system to detect the speed of all vehicles on a bridge, which vehicles have gone over the 
bridge and how often 

 Data on the history of the permits already issued to detect heavy vehicle outliers which have 
been approved previously however has caused harm to the deck wearing surfaces of bridges 

 Data on past performance without relying on freight data 

 WiM needs to be more network-wide and needs to be relevant to a specific structure 

Group Subgroup Key response 

Transport 
Regulation 

Heavy Vehicle 
Policy and Heavy 

Vehicle Operations 

 Intelligent Access Program (IAP) data informs compliance intelligence data 

 This is tracking the OBM, where they are tracking and how heavy they are 

 There are restrictions on what you can and can’t use the data for (IAP/OBM) 

 Mandatory IAP is linked to registration so you know which vehicle it is 

 Currently, this is predominantly used for education 

Portfolio 
Investment and 
Programming 

Transport Systems 
Asset Management 

 Currently getting data from the internet, On-Board Mass (OBM) and Intelligent Access Program 
(IAP) 

 Drawback of OBM is that you can only get data from those who choose to take it on whereas 
WiM can give you data on all traffic that passes a particular site 

 IAP uses satellite tracking and telematics to remotely monitor where when and how heavy 
vehicles are being operated on the road network. The IAP can also include on-board mass 
monitoring to record the mass of the vehicle in some areas 

 IAP does not identify the driver of the vehicle 

 Use ANPR cameras to detect whether a vehicle is registered or insured, in conjunction with the 
Queensland Police Service 

Portfolio 
Management Office 

 Current dataset facilitates network reporting 

Transport 
Strategy and 

Planning 

Transport Analysis  No current dataset 
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D.4.4 Barriers Stopping Getting to the Ideal 

Group Subgroup Key response 

Program Delivery 
and Operations 

Central West 
District 

 WiM data not being used at the moment but very interested in obtaining the data since it can be 
used as an input to pavement design and seal design 

Engineering & 
Technology 

Road Operations  Date/time location of GVM and freight numbers 

 Standard Axle Repetitions (SARS) for impact assessment on pavements and bridges 

 ESA calculations for planning and asset protection 

 Over mass and oversize reports for compliance planning 

 Vehicle configuration noncompliance on approved routes 

 Speeding heavy vehicles 

 Imbalance loading of heavy vehicles 

Current data used by: 

 Pavement and structural engineers both internal and external 

 Freight and heavy vehicle planning studies 

 Transport compliance 

 National Heavy Vehicle Regulator 

 Consultants 

 Asset managers 

Current data could be used as follows: 

 Improved data could be utilised for identification of vehicle in lane placement 

 Local governments could use data to inform their decisions 

Pavements 
Materials & 

Geotechnical 

 Loads and axle groups – if there is a WiM in close proximity to the design location – this data has 
to be specifically requested, and then an assessment is made, based on the load distribution and 
engineering judgement, as to the validity or accuracy of the data. It would be beneficial if this 
data was easier to access, ideally in real-time. In addition, it would be preferable to be able to 
access the raw data to assist with determinations as to the data accuracy. The variation in data 
from a site can vary significantly from year to year. It is unclear whether this is due to calibration 
issues or accurately represents variations in actual loading. 

 Classifier data is more readily available and more likely to be available for sites close to the 
design site. 

Structures  Currently WiM has no useful visibility in the bridge space, more so in the compliance space 

Group Subgroup Key response 

Transport Regulation Heavy Vehicle Policy & 
Heavy Vehicle Operations 

 Lack of reliability of data 

Portfolio Investment 
and Programming 

Transport Systems Asset 
Management 

 Lack of accessibility to the required data, reliability of the data quality and integration 
between the data sources. 

 Lack of reliability of the data quality is another issue. Therefore, it is better to have 
fewer, better calibrated, more reliable WiM sites. 

 Linking the WiM information to be an enabler for the type of payback for the user 

Portfolio Management 
Office 

 Low reliability of obtained data with constrained funding  

 Less effective maintenance of the heavy vehicle standards  

Transport Strategy and 
Planning 

Transport Analysis  Low reliability of data therefore cannot be used for prosecutions 

Program Delivery and 
Operations 

Central West District  WiM sites are unreliable and data quality is low 

 WiM data not readily available unless you know who to contact 

 Districts are requesting new WiM sites but E11 reluctant to install any new sites as 
they have insufficient operational funding 

Engineering & 
Technology 

Road Operations  Approximately 80–100 reports are generated a month from the self-service web 
tools 

 Need to assess the WiM network state-wide – identify strategic needs and gaps 
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D.4.5 Importance/Value of the Idea Dataset and How it is Valued 

Group Subgroup Key response 

 Ongoing assessment of equipment and site performance – programmed site 
maintenance and calibration equipment and infrastructure upgrades 

 The main challenge is the value of the data. Replacement cost of WiM asset can be 
handled but it is the value of the data that is high 

What needs to happen now to get to the ideal 

 Overload management cannot be achieved without the significant input of CSB 
resources to enforce mass compliance. Funding provision for these resources 
should be considered.  

 Assessment of the need for additional, and/or required changes to, the WiM 
networks across the state (by periodically identifying strategic needs, gaps and 
duplications etc.) 

 Ongoing assessment of equipment and site performance with a view to 
programming site maintenance, site recalibrations, and equipment/infrastructure 
upgrades where necessary 

Pavements Materials & 
Geotechnical 

– 

Structures  If cost of getting the data exceeds the cost of existing efficiency, then there is no 
beneficial value 

 Essentially, the business hasn’t identified the need for data, so no barriers are 
present 

Group Subgroup Key response 

Transport Regulation Heavy Vehicle Policy 
and Heavy Vehicle 

Operations 

 Yes, WiM data could be used to validate Performance Based Standards (PBS) – are the 
vehicles within the envelope? 

 Philosophy of ‘run, build, maintain’ is difficult without the inputs being known. 

 ‘Lean’ asset management and ‘lean’ access management needs a good knowledge of 
the inputs 

Portfolio Investment 
and Programming 

Transport Systems Asset 
Management 

 No question that we need heavy vehicle data 

Portfolio Management 
Office 

 Important since reliable data will lead to data-based decision making 

Transport Strategy 
and Planning 

Transport Analysis  Better WiM data means better calibration of the model and more reliable estimates. In 
turn this leads to improved decision making and smarter spending 

 Even better static data would be helpful compared to what is currently available 

 It’s more than aspirational – we have no choice; industry has the data and we don’t 

Program Delivery 
and Operations 

Central West District  If there is no WiM, we would lose the ability to quantify arguments. 

 Could continue to conduct business but lack of data would compromise the ability to do 
it effectively 

 Would lose sight of what the loads are and how they are changing, especially important 
if loading regimes change and you would end up in a best guess scenario 

Engineering & 
Technology 

Road Operations  Reduce significant risks for the management of bridges and pavements 

 A quality system for mass management of heavy vehicles will mitigate the risk and likely 
deliver productivity improvements from improved access to infrastructure  

 Increase support of compliance to Transport Operations (Road Use Management) Act 
1995  

 Optimising transport productivity can significantly reduce the cost of business and cost 
of living for consumers, and enhance our international competitiveness in key export 
markets 

 Restricted access to the network limits productivity improvements  

Pavements Materials & 
Geotechnical 

Value 

 Without knowing how much better the data can be it is difficult to quantify the value 
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D.4.6 Fund Collection for the Ideal Dataset 

 

Group Subgroup Key response 

 The gross replacement value of the State Controlled Network (as at 30 June 2017) is 
approximately $76 billion (State of the Asset Report 2016–2017), approximately 
$1 billion is spent annually on maintenance, preservation and operations (MPO) 

– (from TMR annual report – operating budget $5.8 billion, capital budget $2.8 billion, 
managed assets worth $76 billion)  

– If you could get 10% better life – what does that look like? 

– If your distribution changed by x% then the pavement thickness changes by y%, then 
apply $/m2? 

Importance 

 Very important but there are currently workarounds 

 Without accurate data designs are suboptimal 

Structures Value of the ideal dataset 

 Current dataset not systematically used and no current methodologies to use data if it 
was available. Essentially, limited value 

Importance of the ideal dataset 

 We don’t know the importance right now 

 It’s a challenging time to be doing the project 

 Business hasn’t identified the need for the data 

 Appetite within organisation is for tangible offsets to demonstrate the cost and benefit 

Group Subgroup Key response 

Transport Regulation Heavy Vehicle Policy and 
Heavy Vehicle Operations 

– 

Portfolio Investment and 
Programming 

Transport Systems Asset 
Management 

– 

Portfolio Management Office – 

Transport Strategy and 
Planning 

Transport Analysis – 

Program Delivery and 
Operations 

Central West District – 

Engineering & 
Technology 

Road Operations  Prioritise the site maintenance base on safety risk and compromising the risks 
for the management of bridges and pavements 

Pavements Materials & 
Geotechnical 

 The data could be used to facilitate user access – e.g. for PBS applications a 
percentage of the application fee is directed towards calibration of WiM sites 

 Major projects exceeding defined value required to include a WiM site, including 
ongoing funding for maintenance/calibration 

 Fund it through enforcement – how much ‘damage’ is saved through better 
enforcement 

Structures  Until you know how it would change your business it’s very hard to put a value 
on it 

 Currently getting by without it but need a change of focus 


