A new approach to asphalt pavement design

NACOE

TODAY'S MODERATOR

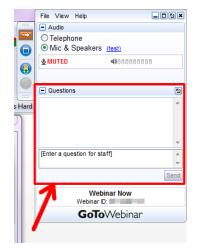
Angela Racz

Online Training Coordinator Knowledge Transfer - ARRB Group

P: +61 3 9881 1694 E: training@arrb.com.au

HOUSEKEEPING

Webinar is = 60 mins



Queensland

GOTOWEBINAR FUNCTIONS

Please type your questions here

TODAY'S PRESENTER

Mr Peter Bryant

Principal Engineer (Pavement Design) Transport and Main Roads

P: +61 7 3066 7743 E: peter.n.bryant@tmr.qld.gov.au

TODAY'S PRESENTER

Dr Erik Denneman

Director Technology and Leadership Australian Asphalt Pavement Association

P: +61 499 601 010 E: erik.Denneman@aapa.asn.au

TODAY'S PRESENTER

Dr Jeffrey Lee

Principal Pavements Engineer ARRB Group - Pavements Technology

P: +61 7 3260 3527 E: jeffrey.lee@arrb.com.au

Introduction and overview

NACOE

Peter Bryant

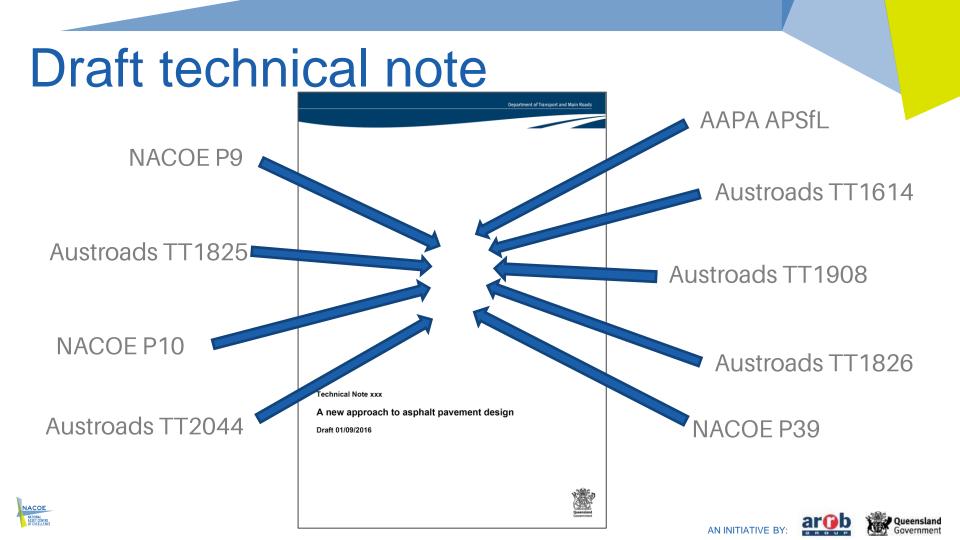
AN INITIATIVE BY:

Contributing research projects

National Asset Centre of Excellence (NACOE)

- P10 Cost-effective design of asphalt pavements at Queensland pavement temperatures
- P39 Long life pavement alternatives for Queensland
- P9 Cost-effective design of thick asphalt pavements: high modulus asphalt implementation

Austroads


- TT1614 Pavement wear effects of heavy vehicle axle groups
- TT1825 Strategic review of pavement design practice
- TT1826 Improved design procedures for asphalt pavements
- TT1908 High modulus asphalt implementation
- TT2044 Encouraging pavement design innovations

Australian Asphalt Pavement Association (AAPA)

Asphalt pavement solutions for life (APSfL)

Four key changes proposed

Asphalt design modulus

Asphalt fatigue relationship

Upper limit on design traffic Multipleaxle group loads

Outcomes

Example inputs:

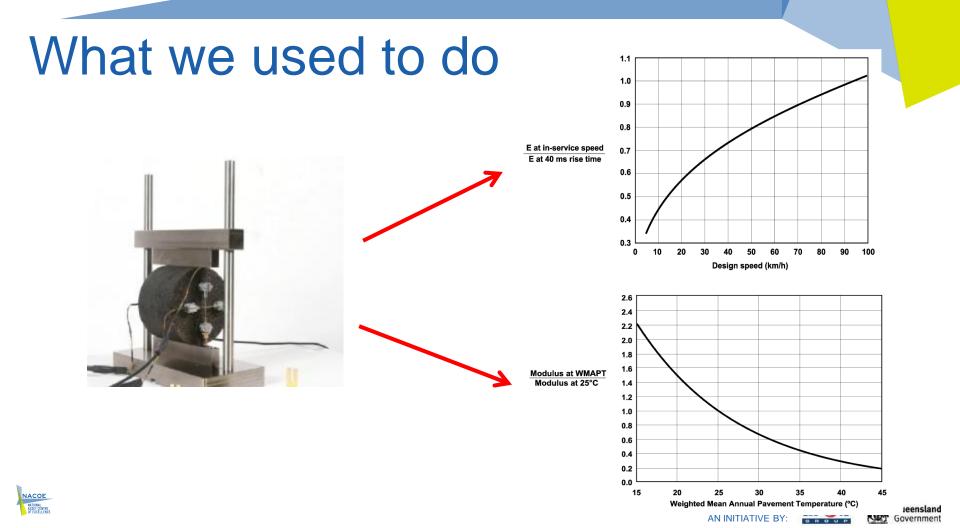
80,000 vehicles per day 10% heavy vehicles 4% annual growth 1.52x10⁸ ESA (30 years)

50 mm SMA14 50 mm AC14M(A5S) X mm AC20M(C600) 150 mm improved layer Subgrade design CBR 7%

NACOE

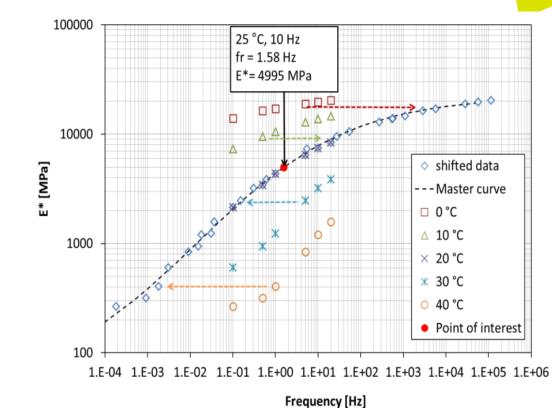
NATIONAL

ASSET CENTRE OF EXCELLENCE

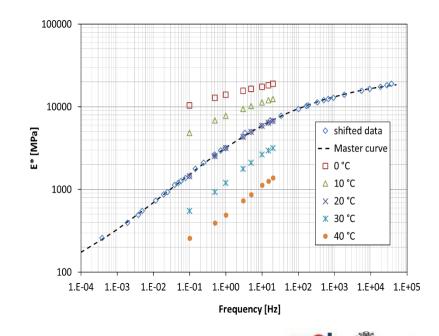

Flexural modulus

AN INITIATIVE BY:

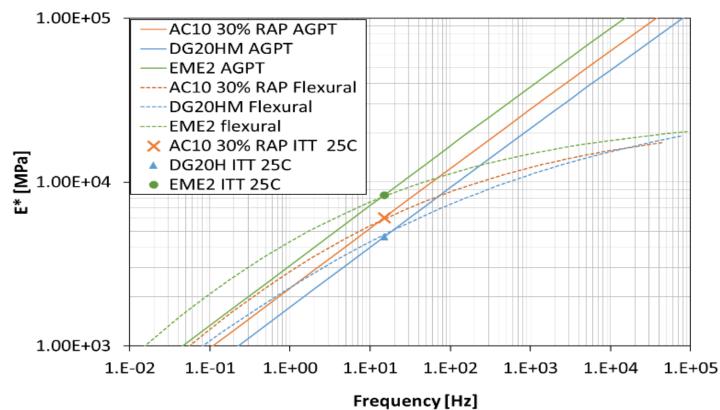
Erik Denneman



What we will be doing



Why we will be doing it


- Better represents flexural modulus over range of temperatures and frequencies
- Higher modulus at elevated temperatures/low vehicle speeds
- Realistic modulus at low temperatures

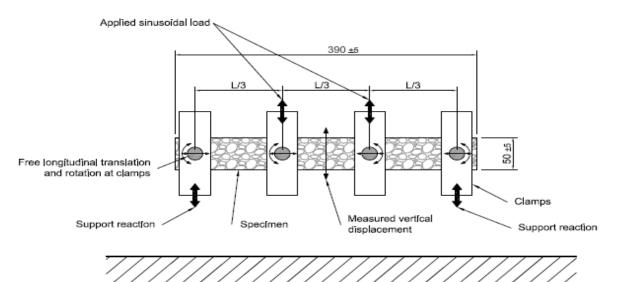
AN INITIATIVE BY

Why we are doing it

Why we are doing it

- Higher modulus leads to reduced pavement thicknesses
- Mix specific master curves open doors to innovation (competitive advantage for high performance mixes)
- Reduce risk

Background


- Austroads guide to pavement technology (AGPT) uses <u>flexural modulus</u> for asphalt pavement design
- Flexural modulus for AGPT designs estimated from resilient modulus
- Shell (1978) design method used <u>flexural modulus</u>
- Shell nomographs estimate <u>flexural modulus</u> (master curve)
- Austroads AP-R511-16 recommends reintroduction of measured <u>flexural</u> <u>modulus</u> (master curve) as basis for design

Test method

• Four point bending

Test method

- AGPT/T274 replaces AGPT/T233
- Changes w.r.t. modulus include:
 - Use of small strain

NACOE

- temperature and frequency sweep
- Sinusoidal wave shape
- Construct E* master curve

Characterisation of Flexural Stiffness and Fatigue Performance of Bituminous Mixes

1. Preface

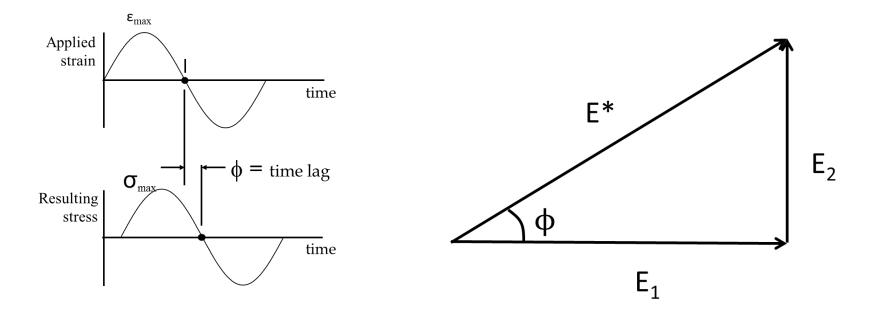
This asphalt test method was prepared by the Pavement Structures Working Group and the Asphalt Research Working Group on behalf of Austroads. Representatives of Austroads, ARRB Group and the Australian Asphalt Pavement Association have been involved in the development and review of this test method.

2. Foreword

This test method should be read in conjunction with the European Standards EN 12697-24:2012, *Bituminous mixtures – Test methods for hot mix asphalt – Part 24: resistance to fatigue* and EN 12697-26:2012, *Bituminous mixtures – Test methods for hot mix asphalt – Part 26: stiffness*, published by the European Committee for Standardization. This Austroads method provides instructions on conducting tests in accordance with these European Standards, while complying with Austroads specimen preparation methodology and test conditions.

3. Scope

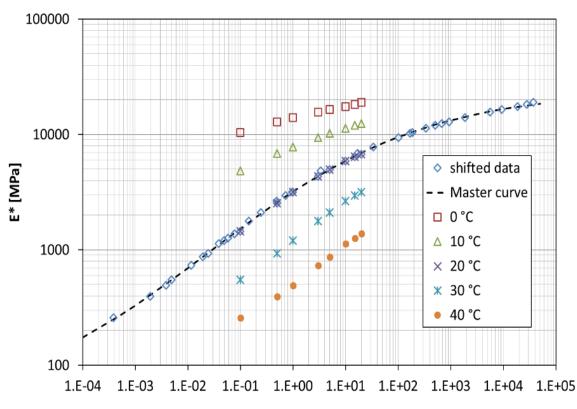
The test method specifies procedures for the characterisation of the stiffness and fatigue behaviour of bituminous mixtures using a four-point bending test configuration. The test procedure to characterise the complex modulus is contained in Section 10 of this Austroads test method. The procedure to determine the fatigue performance is described Section 11. Section 12 contains a method to develop a complex modulus master curve from modulus results obtained using the method in Section 10. The tests are performed on compacted bituminous material under a sinusoidal displacement-controlled loading on prismatic specimens.


The modulus and fatigue characterisation tests can be run independently, or can be run consecutively on the same specimen, with the fatigue test following the modulus test.

Contents

1.	Prefs	1						
2	Foreword							
3	Scope							
4	Safety Disclaimer							
5.	Further Development 2							
6.		rences						
7.		Equipment						
	7.1	Basic Features						
	7.2	Thermostatic Chamber						
	7.3	Checking of the Testing Equipment4						
8.		imen Preparation						
ο.	1.1							
	8.1	Specimen Storage Prior to Test4						
	8.2	Measurement of Specimen Dimensions 4						
	8.3	Measurement of Density and Air Voids5						
9.	Test Procedures5							
10.	Stiffn	ess Test5						
	10.1	Definitions, Terms and Symbols5						
	10.2	Testing Principle5						
	10.3	Equipment5						
	10.4	Specimen Preparation5						
	10.5	Test Conditions6						
		10.5.1 Test Temperatures						
		10.5.2 Loading Frequencies						
	10.6	Testing Procedure						
		Expression of Results						
	10.8	Test Report						
11.	Fatio	ue Resistance Test						
	-	Definitions, Terms and Symbols7						
		Testing Principle						
		Equipment						
		Specimen Preparation						
		Test Conditions						
		Testing Procedure						
	11.7	Expression of Results						
		Test Report						
12.								
	12.1	Principle						
		Experimental Data						
		Test Report						

What is complex modulus |E*|

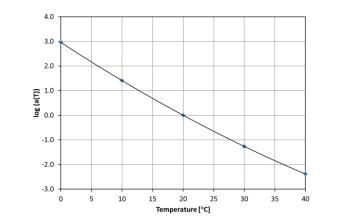

Test method

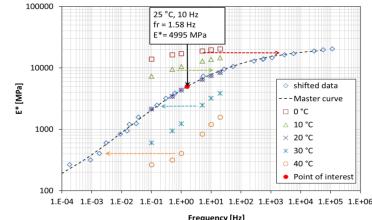
- Developing a master curve for pavement design
 - Temperature and frequency sweep over as wide a range as possible, e.g.:
 - 0 $^{\rm 0}C$, 10 $^{\rm 0}C$, 20 $^{\rm 0}C$, 30 $^{\rm 0}C$ and 40 $^{\rm 0}C$
 - 0.1 Hz, 0.5 Hz, 1 Hz, 3 Hz, 5 Hz, 10 Hz, 15 Hz, 20 Hz, 30 Hz

Master curve construction

Frequency [Hz]

Master curve construction

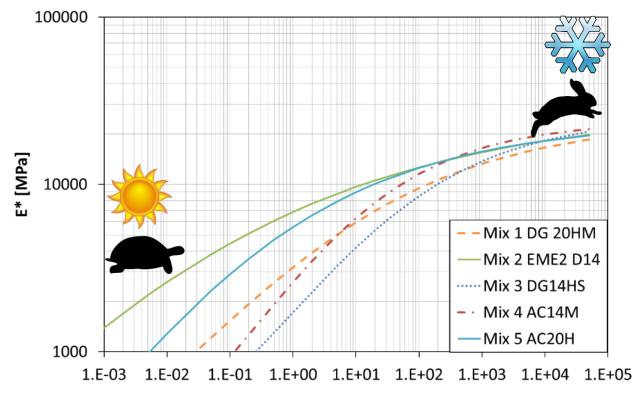

Sigmoidal model


$$\log|E^*| = \delta + \frac{\alpha}{1 + e^{\beta + \gamma \log f_r}}$$

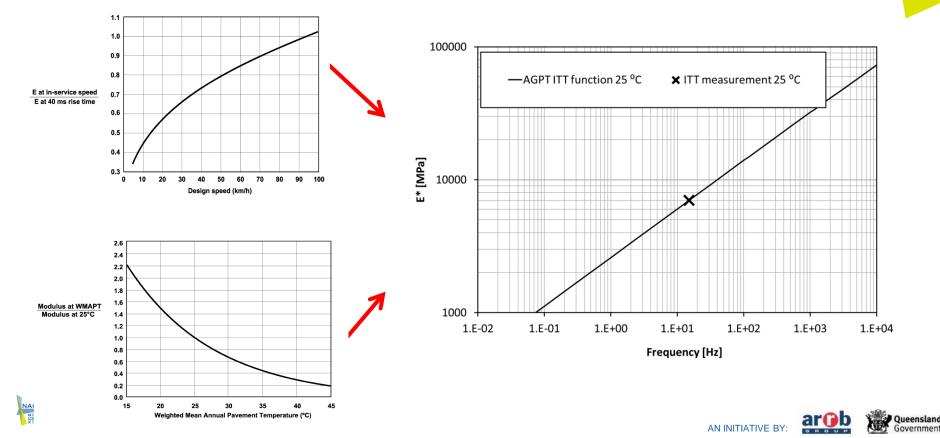
- Reduced frequency $f_r = a(T) \times f$
- Temperature shift factor

NACOE

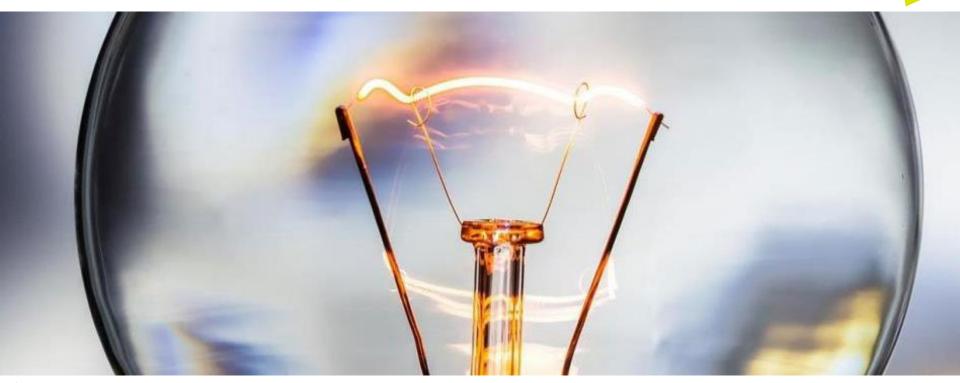
$$\log_{10}(a_T) = a(T - T_{ref})^2 + b(T - T_{ref})$$



Mix specific master curves



Incorporating default values


Use of default values

Asphalt mix type	Binder Type	Volume of binder (%)	<i>Е</i> г25 (MPa)	α	β	γ	δ	а	b
SMA14	A5S	13.0	2400	15.3	0.0	-0.0958	-4.700	1.191×10⁻⁵	-0.0951
AC10M	C320	11.5	3500	15.3	0.0	-0.0958	-4.536	1.191×10⁻⁵	-0.0951
AC10M AC10H	A5S	11.5	2200	15.3	0.0	-0.0958	-4.738	1.191×10 ⁻⁵	-0.0951
AC14M	C320	11.0	4500	15.3	0.0	-0.0958	-4.427	1.191×10⁻⁵	-0.0951
AC14M AC14H	C600	11.0	5400	15.3	0.0	-0.0958	-4.348	1.191×10 ⁻⁵	-0.0951
AC14M AC14H	A5S	11.0	2800	15.3	0.0	-0.0958	-4.633	1.191×10 ⁻⁵	-0.0951
AC20M	C320	10.5	4800	15.3	0.0	-0.0958	-4.399	1.191×10⁻⁵	-0.0951
AC20M AC20H	C600	10.5	5800	15.3	0.0	-0.0958	-4.317	1.191×10⁻⁵	-0.0951
EME2	15/25	13.5	7800	15.3	0.0	-0.0958	-4.188	1.191×10⁻⁵	-0.0951

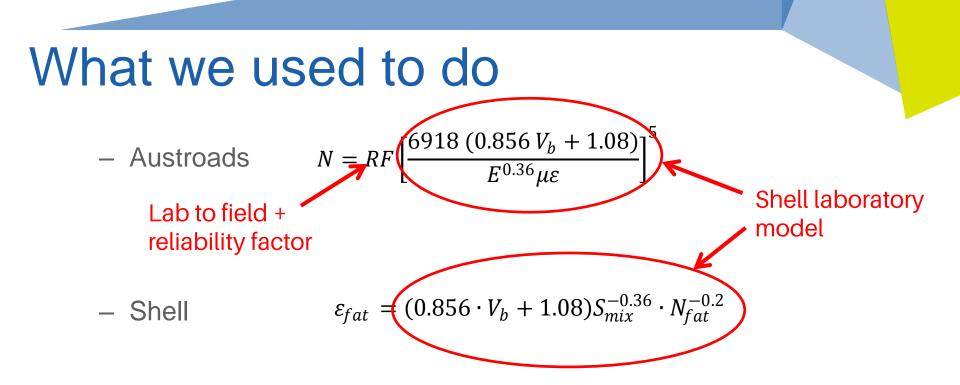
QUESTIONS?

AN INITIATIVE BY:

NACOE

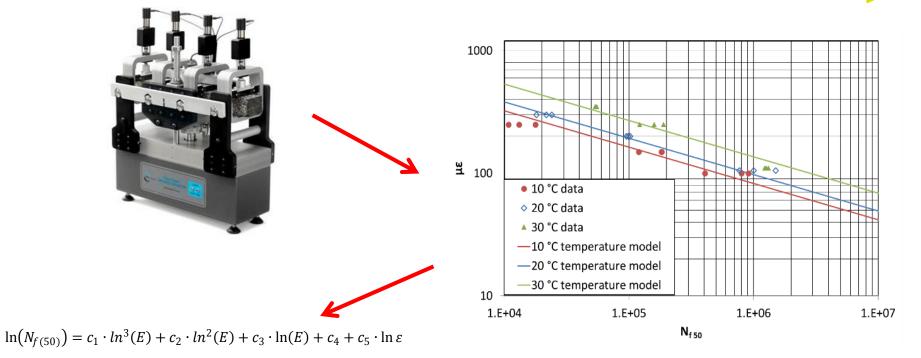
NATIONAL

ASSET CENTRE OF EXCELLENCE


Mix specific fatigue model

Erik Denneman

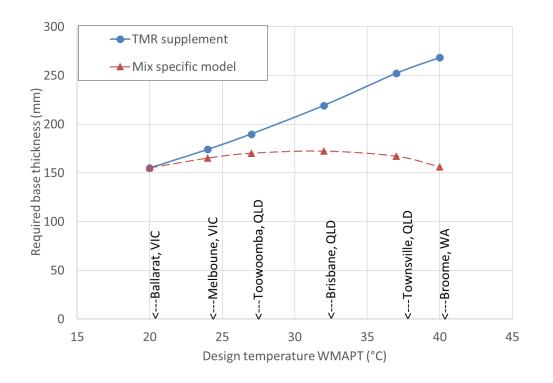
AN INITIATIVE BY:



What we will be doing

NACOE NATIONAL ASSET CENTRE OF EXCELLENC

Why we are doing it


- Encourage use and development of mixes with superior fatigue performance
- Mix specific fatigue models open doors to innovation (competitive advantage for high performance mixes)
- Reduce pavement design thickness
- Reduce risk

Why we are doing it

NACOE NATIONAL ASSET CENTRE OF EXCELLENCE

Background

- Design method AGPT uses Shell (1978) laboratory model to characterise fatigue performance of asphalt mixes
- Shell laboratory based on <u>mean</u> performance of 12 mixes
- Provided that suitable test conditions are used, the general laboratory model can be replaced with mix specific model
- To allow this, AGPT/T233 replaced by AGPT/T274

Test method

- AGPT/T274 replaces AGPT/T233
- Changes w.r.t. fatigue include:
 - Sinusoidal wave shape!
 - 18 specimens per result
 - Improved calculation of engineering properties
- Results from AGPT/T233 not to be used with TechNote

Characterisation of Flexural Stiffness and Fatigue Performance of Bituminous Mixes

1. Preface

This asphalt test method was prepared by the Pavement Structures Working Group and the Asphalt Research Working Group on behalf of Austroads. Representatives of Austroads, ARRB Group and the Australian Asphalt Pavement Association have been involved in the development and review of this test method.

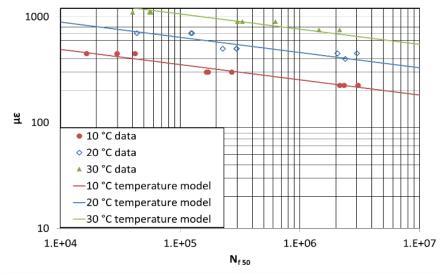
2. Foreword

This test method should be read in conjunction with the European Standards EN 12697-24.2012, *Bituminous mixtures – Test methods for hot mix asphalt – Part 24: resistance to fatigue* and EN 12697-26:2012, *Bituminous mixtures – Test methods for hot mix asphalt – Part 26: stiffness*, published by the European Committee for Standardization. This Austroads method provides instructions on conducting tests in accordance with these European Standards, while complying with Austroads specimen preparation methodology and test conditions.

3. Scope

The test method specifies procedures for the characterisation of the stiffness and fatigue behaviour of bituminous mixtures using a four-point bending test configuration. The test procedure to characterise the complex modulus is contained in Section 10 of this Austroads test method. The procedure to determine the fatigue performance is described Section 11. Section 12 contains a method to develop a complex modulus master curve from modulus results obtained using the method in Section 10. The tests are performed on compacted bituminous material under a sinusoidal displacement-controlled loading on prismatic specimens.

The modulus and fatigue characterisation tests can be run independently, or can be run consecutively on the same specimen, with the fatigue test following the modulus test.


Contents

1.	Prefa	1 1					
2	Foreword						
3	Scope1						
4	Safety Disclaimer						
5.	Further Development						
6		References					
7	Equipment						
	7.1	Basic Features					
	72	Thermostatic Chamber					
	7.3	Checking of the Testing Equipment4					
8							
8.	Specimen Preparation						
	8.1	Specimen Storage Prior to Test4					
	8.2	Measurement of Specimen Dimensions 4					
	8.3	Measurement of Density and Air Voids 5					
9.	Test	Procedures5					
10.	Stiffn	ess Test5					
	10.1	Definitions, Terms and Symbols5					
	10.2	Testing Principle5					
	10.3	Equipment					
	10.4	Specimen Preparation5					
	10.5	Test Conditions6					
		10.5.1 Test Temperatures6					
		10.5.2 Loading Frequencies					
	10.6	Testing Procedure					
	10.7	Expression of Results					
		Test Report7					
11.	Fatio	ue Resistance Test					
	11.1	Definitions, Terms and Symbols7					
		Testing Principle					
	11.3	Equipment					
	11.4	Specimen Preparation					
	11.5	Test Conditions					
	11.6	Testing Procedure8					
	11.7	Expression of Results8					
	11.8	Test Report					
12.	Deriv	ation of the Master Curve9					
	12.1	Principle					
		Experimental Data					
		Test Report 12					

Test method

- Developing a mix specific fatigue model for pavement design
 - Test a minimum of 27 beams equally divided over 3 temperatures
 - 9 beams per temperature: 10 $^{\circ}$ C, 20 $^{\circ}$ C, 30 $^{\circ}$ C
 - three strain levels per temperature

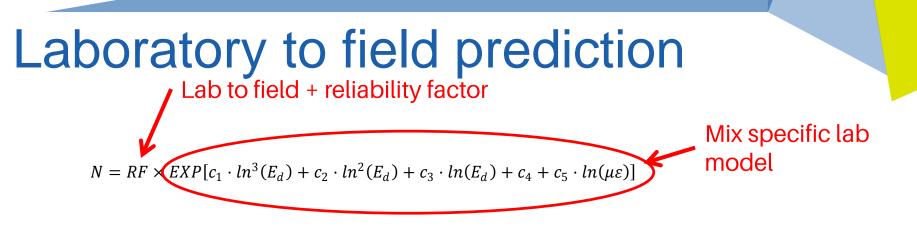
Laboratory model fitting

 $N_{lab} = EXP[c_1 \cdot ln^3(E) + c_2 \cdot ln^2(E) + c_3 \cdot ln(E) + c_4 + c_5 \cdot ln(\mu \varepsilon_{lab})]$

where

 N_{lab} = number of cycles to failure in the laboratory flexural fatigue test

E = flexural modulus (MPa) at the test frequency and test temperature, determined from the master curve (Equation 1)


 $\mu \varepsilon_{lab}$ = strain in laboratory flexural fatigue test (μ m/m)

 $c_1 - c_5 =$ fitting parameters

(7)

where

- N = allowable number of repetitions of the load
- E_d = design flexural modulus as determined in Section 3 (MPa)
- $\mu\epsilon$ = tensile strain produced by the load, determined by mechanistic design (μ m/m)

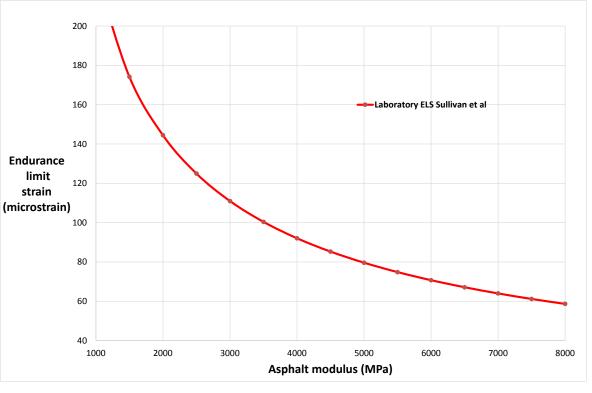
Upper limit on design traffic

NATIONAL ASSET CENTRE OF EXCELLENCE

NACOE

Jeffrey Lee

Key Fatigue Endurance Limit (FEL) studies

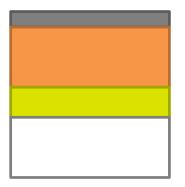

- Shen and Carpenter (University of Illinois)
- NCHRP 9-44A (Arizona State University)
- TRL (Nunn et al)
- Austroads Publication AP-T131/09
- AAPA APSfL
- Austroads TT 2044

On going research in this studies, and consensus has not arrived yet.

AAPA APSfL – Fatigue Endurance Limit

$$\frac{APSfL suggested equation}{FEL = \frac{8.2}{U_l} [k_1 21625 Smix^{-0.65} + k_2]}$$

 k_1 = confidence level adjustment factor k_2 = mix adjustment factor U_l = upper 97.5th single load (ton) S_{mix} = asphalt mix stiffness (MPa)

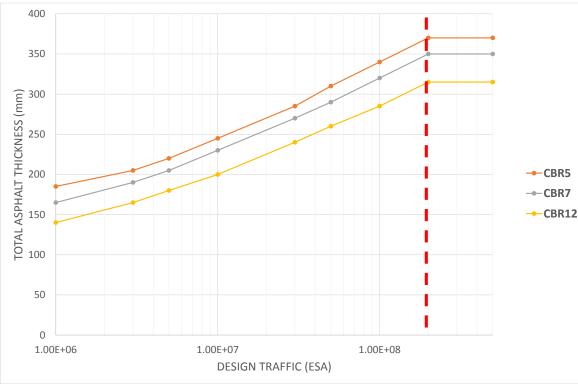

Austroads Project TT 2044

- A discussion paper titled "Asphalt Fatigue Endurance Limits: Guide Implementation Options" was circulated to Austroads Pavement Structure Working Group in June 2016. It reviews the current AAPA APSfL method, and outlined the following options:
 - Option A APSfL method to estimate ELS from asphalt modulus
 - Option B NCHRP 9-44A method to calculate ELS from modulus
 - Option C NCHRP 9-44A estimating ELS from temperature and mix volumetrics
 - Option D Limiting design traffic loading Interim approach recommended in Queensland
 - Option *E* modify fatigue relationship to allow for healing at elevated temperature

Design examples

50 mm AC14M(C320)

X mm AC20M(C600)


150 mm Improved Layer

Design Subgrade (CBR 5, 7, 12%)

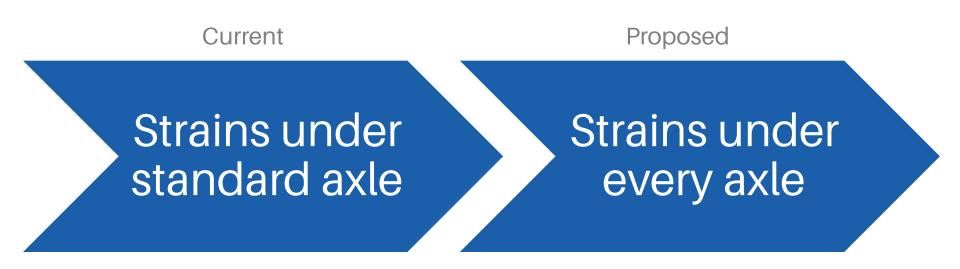
Limiting design traffic

The recommendation is inline with the latest discussion in Austroads where limiting design traffics are:

• 2x10⁸ ESA (WMAPT 26 – 34°C)

QUESTIONS?

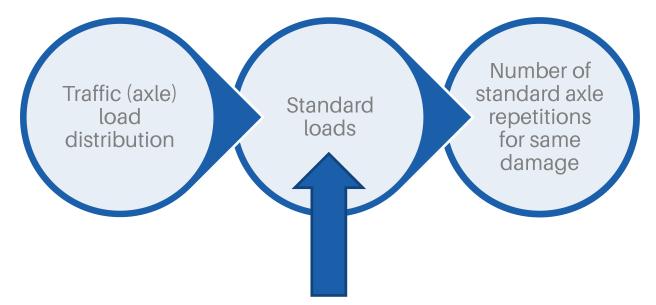
Improved consideration of multiple-axle group loads


Peter Bryant

NATIONAL ASSET CENTRE OF EXCELLENCE

NACOE

Multiple-axle group loads



Austroads TT1614 - Pavement wear effects of heavy vehicle axle groups (Dr Michael Moffatt)

Current Austroads method

Based on the peak surface deflection being the same as under a standard axle

However

For fatigue of bound materials (asphalt and cemented):

• The standard load for an axle group varies with thickness and modulus of the bound material, and the underlying pavement structure (Moffatt)

Research outcome:

• Determine the pavement damage resulting from each individual axle load within the traffic load distribution.

Linear scaling of strains

Resulting critical strains

Axle Group Load (kN)	Critical microstrain under <u>each individual axle</u> (determined by linearly scaling Step 2a strains)					
	SAST	SADT	TAST	TADT	TRDT	QADT
10	14.7	13.3				
20	29.4	26.5		13.3		
30	44.0	39.8	22.0	19.9	13.3	
40	58.7	53.1	29.4	26.5	17.7	
50	73.4	66.3	36.7	33.2	22.1	16.6
60	88.1	79.6	44.0	39.8	26.5	19.9
70	102.8	92.9	51.4	46.4	31.0	23.2
80	117.5	106.1	58.7	53.1	35.4	26.5
90	132.1	119.4	66.1	59.7	39.8	29.8
100		132.7	73.4	66.3	44.2	33.2

...and so on for higher axle group loads

Step 3

Calculate allowable repetitions of each axle group load / type combination (Nij)

$$N = RF \left[\frac{6918(0.856V_b + 1.08)}{E_d^{0.3}(\mu\varepsilon_{ij})} \right]^5$$

 $N = RF \times EXP[c_1 \cdot ln^3(E_d) + c_2 \cdot ln^2(E_d) + c_3 \cdot ln(E_d) + c_4 + c_5 \cdot ln(\mu \varepsilon_{ij})]$

• Will give the allowable number of individual axle loads

• We want the allowable number of axle groups

Step 3

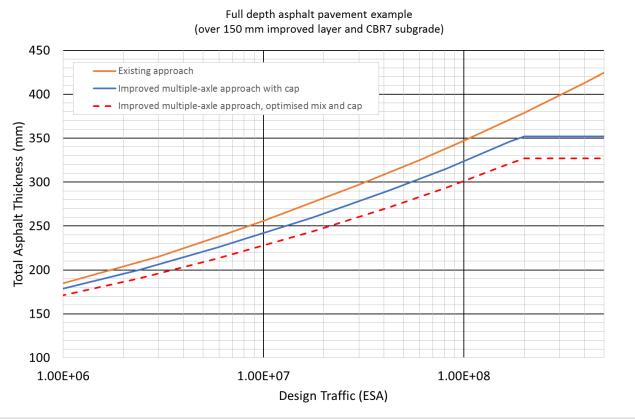
Calculate allowable repetitions of each axle group load / type combination (Nij)

$$N_{ij} = \frac{1}{n} \times RF \left[\frac{6918(0.856V_b + 1.08)}{E_d^{0.36} \mu \varepsilon_{ij}} \right]^5$$

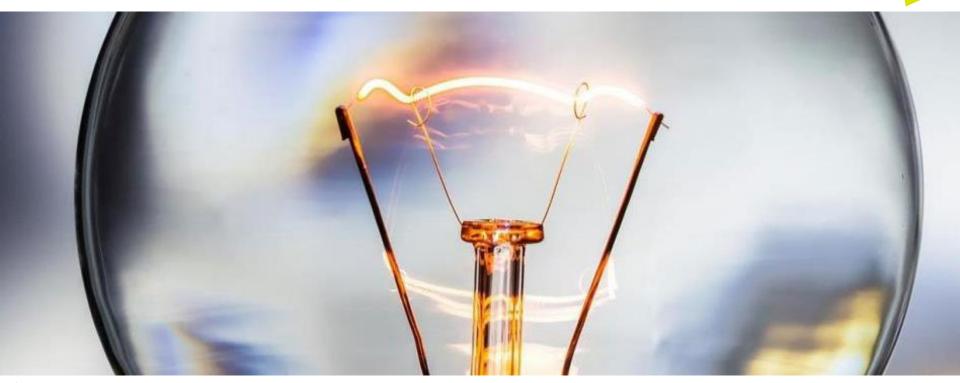
 $N_{ij} = \left(\frac{1}{n} \times RF \times EXP[c_1 \cdot ln^3(E_d) + c_2 \cdot ln^2(E_d) + c_3 \cdot ln(E_d) + c_4 + c_5 \cdot ln(\mu \varepsilon_{ij})]\right)$

n = number of axles in the group

Step 4	Calculate damage for each axle group load (i) and axle group type (j) combination
Step 5	Sum the damage for all combinations


$$Total \ damage = \sum_{ij} \frac{Expected \ repetitions_{ij}}{Allowable \ repetitions_{ij}}$$

Total damage must be ≤ 1.0


Outcomes

QUESTIONS?

THANK YOU FOR YOUR PARTICIPATION TODAY

For further information, please contact:

Peter Bryant Principal Engineer (Pavement Design) Transport and Main Roads	Dr Erik Denneman Director, Technology and Leadership Australian Asphalt Pavement Association	Dr Jeffrey Lee Principal Pavements Engineer ARRB Group
P: +61 7 3066 7743	P: +61 7 3360 7940	P: +61 7 3260 3527
E: peter.n.bryant@tmr.qld.gov.au	E: erik.denneman@aapa.asn.au	E: jeffrey.lee@arrb.com.au

W: nacoe.com.au

