A new approach to asphalt pavement design

Part 2

NATIONAL ASSET CENTRE OF EXCELLENCE

NACOE

AN INITIATIVE BY:

TODAY'S MODERATOR

Angela Racz

Online Training Coordinator Knowledge Transfer - ARRB Group

P: +61 3 9881 1694 E: training@arrb.com.au

GOTOWEBINAR FUNCTIONS

Please type your questions here

Improved consideration of multiple-axle group loads

Peter Bryant

NATIONAL ASSET CENTRE OF EXCELLENCE

NACOE

AN INITIATIVE BY:

Austroads research

The influence of multiple-axle loads on pavement performance

- Rapidly growing freight task
- Trend towards innovative heavy vehicles

Increased focus on the way pavement designers estimate performance under different loads

Significant outcome

Austroads TT1614 - Pavement wear effects of heavy vehicle axle groups (Dr Michael Moffatt)

Traffic load distribution

Ayle Group	Axle group type and proportion (%)							
Load (kN)	SAST	SADT	TAST	TADT	TRDT	QADT		
10	0.1	0.6						
20	3.7	3.6		0.4				
30	15.7	16.5	0.3	1.4	0.2			
40	12.4	18.7	1.4	2.6	0.4			
50	19.7	16.7	3.3	3.3	1.5	0.3		
60	32.4	14.7	2.6	5.8	4.3	1.8		
220				0.6	5.6	5.9		
230				0.4	5.2	5.7		
240				0.1	3.8	6.2		
250				0.1	2.4	5.3		
Total	100.0	100.0	100.0	100.0	100.0	100.0		
Proportion of each axle group type (%)	36.1	16.6	1.9	30.2	15.1	0.1		

NACOE NATIONAL ASSET CENTRE OF EXCELLENC

SAST	•Single axle with single tyres
SADT	Single axle with dual tyres
TAST	• Tandem axle group with single tyres
TADT	• Tandem axle group with dual tyres
TRDT	Tri-axle group with dual tyres
QADT	•Quad axle group with dual tyres

Current Austroads method

Based on the peak surface deflection being the same as under a standard axle

Standard axle repetitions

Standard axle repetitions(SAR5) =
$$\sum_{i=1}^{3} \left(\frac{axle \ group \ load}{standard \ load}\right)^{5}$$

Table 7.5: Loads on axle groups with dual tyres which cause same damage as Standard Axle

Axle group type	Load (kN)
Single axle with dual tyres (SADT)	80
Tandem axle with dual tyres (TADT)	135
Triaxle with dual tyres (TRDT)	181
Quad-axle with dual tyres (QADT)	221

However

For fatigue of bound materials (asphalt and cemented):

• The standard load for an axle group varies with thickness and modulus of the bound material, and the underlying pavement structure (Moffatt)

Moffatt recommendation

Determine the pavement damage resulting from:

• Each axle load and group within the traffic load distribution.

Two alternatives considered:

- Calculate strains under each axle group, or
- · Calculate strains under each individual axle

Linear scaling of strains

AN INITIATIVE BY:

Resulting critical strains

Avla Oroup	Critical microstrain under <u>each individual axle</u>							
Load (kN)	(determined by linearly scaling Step 2a strains)							
	SAST	SADT	TAST	TADT	TRDT	QADT		
10	14.7	13.3						
20	29.4	26.5		13.3				
30	44.0	39.8	22.0	19.9	13.3			
40	58.7	53.1	29.4	26.5	17.7			
50	73.4	66.3	36.7	33.2	22.1	16.6		
60	88.1	79.6	44.0	39.8	26.5	19.9		
70	102.8	92.9	51.4	46.4	31.0	23.2		
80	117.5	106.1	58.7	53.1	35.4	26.5		
90	132.1	119.4	66.1	59.7	39.8	29.8		
100		132.7	73.4	66.3	44.2	33.2		

...and so on for higher axle group loads

Step 3

 Calculate allowable repetitions of each axle group load / type combination (Nij)

$$N = RF \left[\frac{6918(0.856V_b + 1.08)}{E_d^{0.3}(\mu\varepsilon_{ij})} \right]^5$$

 $N = RF \times EXP[c_1 \cdot ln^3(E_d) + c_2 \cdot ln^2(E_d) + c_3 \cdot ln(E_d) + c_4 + c_5 \cdot ln(\mu \varepsilon_{ij})]$

• Will give the allowable number of individual axle loads

• We want the allowable number of axle groups

Step 3

Calculate allowable repetitions of each axle group load / type combination (Nij)

$$N_{ij} = \frac{1}{n} \times RF \left[\frac{6918(0.856V_b + 1.08)}{E_d^{0.36} \mu \varepsilon_{ij}} \right]^5$$

 $N_{ij} = \left(\frac{1}{n} \times RF \times EXP[c_1 \cdot \ln^3(E_d) + c_2 \cdot \ln^2(E_d) + c_3 \cdot \ln(E_d) + c_4 + c_5 \cdot \ln(\mu \varepsilon_{ij})]\right)$

n = number of axles in the group

Step 4

Calculate damage for each axle group load (i) and axle group type (j) combination

 $Damage_{ij} = \frac{Expected \ repetitions_{ij}}{Allowable \ repetitions_{ij}}$

Step 5

• Sum the damage for all combinations

$$Total \ damage = \sum_{ij} \frac{Expected \ repetitions_{ij}}{Allowable \ repetitions_{ij}}$$

Total damage must be ≤ 1.0

Loss of surface shape

- Current Austroads Guide uses standard axle repetitions (SAR7)
- New method uses equivalent standard axles (ESA)
- Performance equation updated to reflect difference between ESA and SAR7

Where:

N = allowable repetitions (ESA)

 $\mu\epsilon$ = vertical compressive microstrain under standard axle

Outcomes

QUESTIONS?

Full depth asphalt pavement design example

Peter Bryant

NACOE

NATIONAL

ASSET CENTRE OF EXCELLENCE

AN INITIATIVE BY:

Introduction

Presumptive design modulus for the surfacing and intermediate courses

Mix-specific design modulus and mix-specific fatigue relationship for the base asphalt

Improved method for the consideration of multiple-axle group loads

Design inputs

Parameter	Value
Annual average daily traffic (AADT)	70,000
Direction factor (DF)	0.5
Percentage of heavy vehicles (%HV)	10.0
Lane distribution factor (LDF)	0.65
Design period	30 years
Heavy vehicle growth rate	3%
Reliability	95%
Weighted mean annual pavement temperature (WMAPT)	32°C
Heavy vehicle speed	80 km/h
Traffic load distribution	Table E3

Design traffic (N_{DT})

$N_{DT} = 365 \times AADT \times DF \times \% HV/100 \times LDF \times CGF \times N_{HVAG}$

= 365 x 70,000 x 0.5 x 10.0/100 x 0.65 x 47.6 x 2.63

= 1.04 x 10⁸ Heavy vehicle axle groups (HVAG)

Design traffic

Ayle Croup Load (KN)	Axle group type and proportion (%)						
Axie Group Load (kin)	SAST	SADT	TAST	TADT	TRDT	QADT	
10	0.1	0.6					
20	3.7	3.6		0.4			
30	15.7	16.5	0.3	1.4	0.2		
40	12.4	18.7	1.4	2.6	0.4		
50	19.7	16.7	3.3	3.3	1.5	0.3	
60	32.4	14.7	2.6	5.8	4.3	1.8	
70	13.8	11.4	9.9	7.5	6.5	2.8	
80	1.9	7.3	13.3	7.9	6.9	3.4	
90			1 1.				
100	Trattic load distribution						
110			1012	0.0			
120		0.0	10.0	EO	0	EA	
130	NΓ	_{от} = 1́	1.04	x 10	[¤] HV	AG	
140							
150		0.1	1.1	6.8	4.6	3.4	
160			0.9	7.5	4.3	3.4	
170			0.5	6.8	4.4	3.6	
100				5.5	4.6	3.4	
190				J.J	4.4	2.5	
210				1.8	4.8	0.3	
220				0.9	5.6	5.0	
220				0.0	0.0	0.9	
000				$\cap A$	E 0	E 7	

Axle Group Load (kN)		Expe	cted repetitio	ns by axle gro	up type	_
	SAST	SADT	TAST	TADT	TRDT	QADT
10	3.75E+04	1.04E+05				
20	1.39E+06	6.22E+05		1.26E+05		
30	5.89E+06	2.85E+06	5.93E+03	4.40E+05	3.14E+04	
40	4.66E+06	3.23E+06	2.77E+04	8.17E+05	6.28E+04	
50	7.40E+06	2.88E+06	6.52E+04	1.04E+06	2.36E+05	3.12E+02
60	1.22E+07	2.54E+06	5.14E+04	1.82E+06	6.75E+05	1.87E+03
70	5.18E+06	1.97E+06	1.96E+05	2.36E+06	1.02E+06	2.91E+03
80	7.13E+05	1.26E+06	2.63E+05	2.48E+06	1.08E+06	3.54E+03
90	1.13E+05	7.94E+05	3.04E+05	2.04E+06	8.64E+05	7.80E+03
100						1
110	EX	pect	ed re	petiti	ions	3
120		1.04E+05	2.61E+05	1.85E+06	7.69E+05	5.82E+03
130		5.18E+04	1.01E+05	2.10E+06	7.54E+05	6.03E+03
140		3.45E+04	2.96E+04	2.04E+06	7.38E+05	5.62E+03
150		1.73E+04	2.17E+04	2.14E+06	7.22E+05	3.54E+03
160			1.78E+04	2.36E+06	6.75E+05	3.54E+03
170			9.88E+03	2.14E+06	6.91E+05	3.74E+03
180				1.73E+06	7.22E+05	3.54E+03
190				1.04E+06	6.91E+05	2.60E+03
200				5.65E+05	7.54E+05	5.51E+03
210				2.83E+05	8.48E+05	5.41E+03
220				1.88E+05	8.79E+05	6.14E+03
230				1.26E+05	8 17E+05	5.93E+03

Fatigue assessment - Step 1

• Select pavement structure and characterise all materials

Pavement structure

Course	Thickness (mm)	Description		
Surfacing	50	SMA14 - presumptive master curve - 1300 MPa		
Intermediate	50	AC14M(A5S) - presumptive master curve – 1500 MPa		
Base	X (= 230 mm for this iteration, excludes tolerance)	AC20M(C600) - mix-specific master curve and fatigue relationship		
Improved layer	150	Lightly stabilised unbound granular		
Select fill	170	Design CBR 10%		
Existing subgrade	-	Design CBR 3%		
-			arGh	

AC20M(C600) design modulus

• Master curve ($T_{ref} = 25^{\circ}C$, 5% air voids)

NACOE NATIONAL ASSET CENTRE OF EXCELLENC

AN INITIATIVE BY:

Fatigue assessment - Step 2

• Determine critical tensile strains under each axle

CIRCLY	output
--------	--------

Axle type	Axle load (kN)	Critical tensile microstrain
Single axle with single tyres	53	77.8
Single axle with dual tyres (Standard Axle)	80	106.1
IACOE	(Linear scali

Axle Group	Critical n	nicrostrain	under e	ach indi	vidual a	xle
Load (kN)	SAST	SADT	TAST	TADT	TRDT	QADT
10	14.7	13.3				
20	29.4	26.5		13.3		
30	44.0	39.8	22.0	19.9	13.3	
40	58.7	53.1	29.4	26.5	17.7	
50	73.4	66.3	36.7	33.2	22.1	16.6
60	88.1	79.6	44.0	39.8	26.5	19.9
70	102.8	92.9	51.4	46.4	31.0	23.2
80	117.5	100.1	58.7	53.1	35.4	26.5
90	132.1	119.4	66.1	59.7	39.8	29.8
100		132.7	73.4	66.3	44.2	33.2
110		145.9	80.8	73.0	48.6	36.5
120		159.2	88.1	79.6	53.1	39.8
130		172.4	95.4	86.2	57.5	43.1
140		185.7	102.8	92.9	61.9	46.4
150		199.0	110.1	99.5	66.3	49.7
160			117.5	106.1	70.7	53.1
170			124.8	112.8	75.2	56.4
400				440.4	700	

sland

Fatigue assessment – step 3

Determine the allowable load repetitions

 Parameter
 c1
 c2
 c3
 c4
 c5

 Value
 0.37663
 -9.3728
 75.086
 -151.67
 -5.0209

axles to allowable axle groups

Strain under

Allowable load repetitions

	Allowable axle group load repetitions						
Axle Group Load (kN)	SAST	SADT	TAST	TADT	TRDT	QADT	
10	1.57E+12	2.62E+12					
20	4.85E+10	8.07E+10		1.31E+12			
30	6.33E+09	1.05E+10	1.03E+11	1.71E+11	8.74E+11		
40	1.49E+09	2.49E+09	2.42E+10	4.04E+10	2.06E+11		
50	4.87E+08	8.11E+08	7.91E+09	1.32E+10	6.72E+10	2.14E+11	
60	1.95E+08	3.25E+08	3.17E+09	5.27E+09	2.69E+10	8.56E+10	
70	8.99E+07	1.50E+08	1.46E+09	2.43E+09	1.24E+10	3.95E+10	
80	4.60E+07	7.66E+07	7.47E+08	1.24E+09	6.35E+09	2.02E+10	
90	2.55E+07	4.24E+07	4.13E+08	6.88E+08	3.51E+09	1.12E+10	
100		owok		potit)9	
110	All	owar	le le	pen	IONS	09	
120		1.00E+07	9.75E+07	1.62E+08	8.29E+08	2.64E+09	
130		6.69E+06	6.52E+07	1.09E+08	5.55E+08	1.76E+09	
140		4.61E+06	4.50E+07	7.49E+07	3.82E+08	1.22E+09	
150		3.26E+06	3.18E+07	5.30E+07	2.70E+08	8.60E+08	
160			2.30E+07	3.83E+07	1.96E+08	6.22E+08	
170			1.70E+07	2.82E+07	1.44E+08	4.59E+08	
180				2.12E+07	1.08E+08	3.44E+08	
190				1.62E+07	8.25E+07	2.62E+08	

	Expected repetitions by axle group type					
Axie Group Load (KN)	SAST	SADT	TAST	TADT	TRDT	QADT
10	3.75E+04	1.04E+05				
20	1.39E+06	6.22E+05		1.26E+05		
30	5.89E+06	2.85E+06	5.93E+03	4.40E+05	3.14E+04	
40	4.66E+06	3.23E+06	2.77E+04	8.17E+05	6.28E+04	
50	7.40E+06	2.88E+06	6.52E+04	1.04E+06	2.36E+05	3.12E+02
60	1.22E+07	2.54E+06	5.14E+04	1.82E+06	6.75E+05	1.87E+03
70	5.18E+06	1.97E+06	1.96E+05	2.36E+06	1.02E+06	2.91E+03
80	7.13E+05	1.26E+06	2.63E+05	2.48E+06	1.08E+06	3.54E+03
90	1.13E+05	7.94E+05	3.04E+05	2.04E+06	8.64E+05	7.80E+03
100		4.83E+05	3.02E+05	1.82E+06	8.48E+05	1.03E+04
110		3.28E+05	3.20E+05	1.85E+06	8.48E+05	7.90E+03
120	- Ev	noot	nd ro	notiti	one	3
130		pecie	eure	penn	0115	3
140		3.45E+04	2.96E+04	2.04E+06	7.38E+05	5.62E+03
150		1.73E+04	2.17E+04	2.14E+06	7.22E+05	3.54E+03
160			1.78E+04	2.36E+06	6.75E+05	3.54E+03
170			9.88E+03	2.14E+06	6.91E+05	3.74E+03
180				1.73E+06	7.22E+05	3.54E+03
190				1.04E+06	6.91E+05	2.60E+03
200				5.65E+05	7.54E+05	5.51E+03
210				2.83E+05	8.48E+05	5.41E+03
220				1.88E+05	8.79E+05	6.14E+03
230				1.26E+05	8.17E+05	5.93E+03

Fatigue assessment – steps 4 & 5

• Determine the damage for <u>each combination and sum</u>

 $Total damage = \sum_{ij} \frac{Expected repetitions}{Allowable repetitions}$

Axle Group	Asphalt fatigue damage					
Load (kN)	SAST	SADT	TAST	TADT	TRDT	QADT
10	0.000	0.000				
20	0.000	0.000		0.000		
30	0.001	0.000	0.000	0.000	0.000	
40	0.003	0.001	0.000	0.000	0.000	
50	0.015	0.004	0.000	0.000	0.000	0.000
60	0.062	0.008	0.000	0.000	0.000	0.000
70	0.058	0.013	0.000	0.001	0.000	0.000

 \leq 1.0, therefore pavement is OK

Loss of surface shape

• Using maximum vertical compressive strain in the subgrade, under a standard 80 kN axle

- Where:
- N = allowable repetitions (ESA)
- $\mu \varepsilon$ = vertical compressive microstrain under standard axle

As shown in the draft technical note, N > design ESA, therefore pavement is acceptable

Comparison with existing design procedures

Course	Description	Thickness (mm) – technical note	Thickness (mm) – existing procedures	
Surfacing	SMA14	50		
Intermediate	AC14M(A5S)	Į	50	
Base	AC20M(C600)	240	295	
Improved layer	Lightly stabilised unbound granular	150		
Select fill	Design CBR 10%	170		
Existing subgrade	Design CBR 3%	-		

Thickness includes tolerances

QUESTIONS?

AN INITIATIVE BY:

Implementation and stakeholder feedback

NACOE

NATIONAL

ASSET CENTRE OF EXCELLENCE Peter Bryant

AN INITIATIVE BY:

Risk mitigation

Inconsistent mix analysis

Independent testing

Review and mix registration

Constructed mix substantially different to mix-specific design

 Additional compliance testing linked to mix design – resilient modulus currently proposed

Risk mitigation

Mixes with high modulus but poor fatigue properties

• If using mix-specific modulus, the mix-specific fatigue relationship must also be used

Overestimating field performance

- Maximum reduction in thickness for full depth asphalt pavements
- Maximum increase in allowable loading for thin asphalt surfacings

Implementation

Consultation plan

1 September	Release of draft technical note		
5 October	First round written comments due		
October/November	Consideration of comments and further stakeholder engagement (if needed)		
December/January?	Publication and implementation - tentative		

How to provide feedback

• Please provide feedback through your representative:

Stakeholder	Representative		
Australian Asphalt Pavement Association	Rob Vos		
Consult Australia	Stacey Rawlings		
Transport and Main Roads	Pavement Reference Group representative		

 Representatives and others send feedback to peter.n.bryant@tmr.qld.gov.au

QUESTIONS?

THANK YOU FOR YOUR PARTICIPATION TODAY

For further information, please contact:

Peter Bryant	Dr Erik Denneman	Dr Jeffrey Lee
Principal Engineer (Pavement Design)	Director, Technology and Leadership	Principal Pavements Engineer
Transport and Main Roads	Australian Asphalt Pavement Association	ARRB Group
P: +61 7 3066 7743 E: peter.n.bryant@tmr.qld.gov.au	P: +61 7 3360 7940 E: erik.denneman@aapa.asn.au	P: +61 7 3260 3527 E: jeffrey.lee@arrb.com.au

W: nacoe.com.au

